数学
-
Calabi-Yau三角范畴中扭对的分类及其应用常会敏本书主要涉及Calabi-Yau三角范畴中扭对分类的发展研究,涵盖了有限的2-CY三角范畴、丛范畴、高阶丛范畴和无穷丛范畴中的(余)扭对的分类及其应用,有限的2-CY三角范畴是只含有限多个不可分解对象并且带有极大刚性对象的2-CY三角范。丛范畴和高阶丛范畴包括A型和D型,无穷丛范畴包括A∞型、A∞ ∞型、包含n个极限点的A∞型和D∞型的丛范畴。最后,最为应用,介绍了利用丛倾斜子范畴计算Grothendieck群的方法。本书可供从事代数表示论领域的科研人员了解三角范畴、AR-箭图、扭理论、特殊三角范畴(包括有限2-Calabi-Yau三角范畴、高阶丛范畴和无穷丛范畴)的几何模型等,了解扭对分类的方法及其应用。 -
生活是堂数学课梁进今天的生活以一种不可思议的方式飞速地改变着,越来越多的新方式中出现并影响着我们的生活,而这背后数学扮演者越来越重要的角色。本书从生活哲学中的数学、古代生活中的数学、日常生活中的数学以及现代生活中的数学四个部分,将生活正隐藏着的数学道理娓娓道来。在琐碎繁复的日常生活中,我们会遇到林林总总各种问题。本书引导读者学习数学思维,掌握数学方法,用科学的方式来处理问题、应对挑战。本书主旨在于让读者关注社会热点,将所学数学知识实际应用,融会贯通,拓展知识视野,启发社会人士思考,激发探索精神,既满足好奇心,又有实用价值,促使读者认识基础科学的重要性——原来数学如此有用。 -
概念认知学习理论与方法徐伟华,李金海,折延宏概念认知学习是人工智能、大数据领域关注的多学科交叉研究方向,涵盖了哲学、数学、心理学、认知科学以及信息科学等领域.《概念认知学习理论与方法》旨在为广大学者和科研工作者提供概念认知学习领域的基础理论与学习方法.《概念认知学习理论与方法》主要内容包括概念认知学习的基本概念和基础知识、概念认知系统的逻辑推理、概念认知的双向学习机制、对象 -属性诱导概念学习理论、多注意力概念认知学习模型、渐进模糊三支概念的增量学习机理、复杂网络下的概念认知学习以及概念的渐进式认知等理论体系. -
基于R-INLA的SPDE空间模型的高级分析Elias Krainski Virg空间和时空连续过程的建模是空间统计学中一个重要且具有挑战性的问题。本书详细阐述了随机偏微分方程(SPDE)方法用于带有Matérn协方差结构的连续空间过程的建模。该方法已经在R-INLA软件包中采用集成嵌套拉普拉斯逼近(INLA)技术进行实现。本书通过使用模拟数据和真实应用程序的示例,解释了关于建模空间过程和SPDE方法的关键概念。 本书的作者都是空间统计学方面的权威人士,其中包括INLA和SPDE方法以及R-INLA软件包的主要开发者。此外,本书还包含了各种不同的应用实例。 本书中的所有例子都可以进行完全复现。此外,关于本书的更多信息以及使用的R代码和数据集,可在本书的网站上获取。 本书中介绍的工具将对许多领域的研究人员有所帮助,例如生物统计学、空间统计学、环境科学、流行病学、生态学等。此外,硕士生和博士生也会发现本书是学习INLA和SPDE方法进行空间建模的有价值的资源。 -
领先世界的中国古代数学侯捷,赵文君,赵宇涛 著在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从“记数”到“算术”的发展过程,了解被称为“中国数制”的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的“河图”与“洛书”、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。 -
大气科学中的数学方法王曰朋,刘文军,胡广平 等《大气科学中的数学方法(第二版)》是在《大气科学中的数学方法》**版基础上修订而成, 较为系统地介绍了微分动力系统、摄动方法、小波分析、偏微分方程数值求解、变分与有限元方法、变分伴随方法、卡尔曼滤波资料同化方法等内容. 编写过程中注意到了学科交叉,力求做到数学知识处理上浅显易懂, 同时也考虑到了对相关气象内容的吸收,充分体现《大气科学中的数学方法(第二版)》的气象特色. 为方便读者参阅和自学, 对典型例题和算法的讲解补充了必要的 MATLAB 程序代码,各章内容也配备了适量习题. -
圆锥曲线论(古希腊)阿波罗尼奥斯 著;朱恩宽等 译《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。 -
吴文俊全集·教材卷I 博弈论讲义中国科学院数学与系统科学研究院博弈论是一门新兴的数学分支,是用数学方法来研究形形色色的带有对抗性质的现象,指示这些现象中的决策人如何采用*优的行动。它的发生和发展也不过是*近三十年间的事,但无论就它所考虑问题的性质而言,抑或就其现有的实际应用而言,都显示出这是一门与实际密切联系、有着广阔发展前途的学科。不过,要使博弈论对我国的生产实际起更大的作用,还有待我们进一步的努力。因此,《吴文俊全集*教材卷I——博弈论讲义》在给读者展示博弈论三十年概貌的同时,也力求引导读者注意联系我国的实际情况。《吴文俊全集*教材卷I——博弈论讲义》内容为二人有限零和博弈、二人无限零和博弈、多人博弈、阵地博弈等四章,叙述力求清楚明白,浅显易懂,只要读者具有大学数学系三年级的数学修养,就不难领会《吴文俊全集*教材卷I——博弈论讲义》的内容。 -
数学游戏[西]胡安·迭戈·桑切斯·托雷斯本书以数学游戏方式进行逻辑和推理挑战,包含不同难度和主题的数学游戏,如数字、字母、序列、几何、逻辑、计数、国际象棋,还有一些数学史。有作者独创游戏,也有经典游戏,同时收录很多了小众数学游戏,这在大部分图书中都很不常见。还附有详细的解谜步骤和答案。无论数学基础如何,都可以在本书中找到乐趣。 -
基本解方法的理论及应用李子才,黄宏财,魏益民,张理评基本解方法最早由V.D. Kupradze 在文章Potential methods in elasticity J.N.Sneddon 和 R.Hill (Eds), Progress in Solid Mechanics, Vol.III, Amsterdam, pp.1-259, 1963 中提出。自 1963 年开始,出现大量基本解方法的计算,但鲜有对基本解方法的分析。本书中,给出基本解方法的数值算法、特点,主要着力于建立其误差和稳定性的理论分析。 本书中的严格分析(以及源节点的选择)为MFS提供了坚实的理论基础,使其成为偏微分方程(PDE)的有效且称职的数值方法。内容源于作者已经发表的论文,本书介绍了MFS的基本和重要要素。
