数学
-
波动方程参数反演理论方法与数值计算张文生 著《波动方程参数反演理论方法与数值计算》系统阐述了波动方程参数反演的理论方法与数值计算方法,内容包括奇异值分解方法、不适定问题的正则化方法、全波形反演的数值优化方法、时间域与频率域声波方程和弹性波动方程的全波形反演。《波动方程参数反演理论方法与数值计算》理论方法与科学计算并重,不但有严谨的理论推导和算法描述,还有详细的数值算例应用及丰富的图形结果。
-
数学物理方程李风泉 著数学物理方程是来源于物理、力学等自然科学及工程技术领域的偏微分方程。《数学物理方程》首先介绍了典型的数学物理模型的建立及二阶线性偏微分方程的分类与化简,然后重点介绍了分离变量法、特殊函数(贝塞尔函数)法、行波法、积分变换法和格林函数法等应用广泛的数学物理方程经典的求解方法,*后简要介绍了某些求解非线性数学物理方程的方法,如Adomian分解法、Cole-Hopf变换法、反散射方法等。《数学物理方程》内容由易到难,叙述做到浅显易懂,并尽量做好与读者已学过的数学课程的衔接。为了方便读者练习,《数学物理方程》还配备了相当数量的例题和习题,并在附录中给出了简答。
-
睡梦中,学三角木棉 著面对数学课本中的三角函数,常会让人感到头昏眼花,成串的公式定理更是许多人产生困惑及排斥。你是不是经常会有这样一种感觉:总是被一群公式定理追着跑,却不知道为什么要跑?如果你有这种感觉,那么《睡梦中,学三角》就是为你而写的三角函数学习书。这本书中有两位主角:一位是爱打瞌睡的小平,他的数学老师叫作“老罩”(老是罩不住);另一位是大M,是小平在睡梦中遇见的“数学守护神”。作者藉由小平和大M的对谈,巧妙地将许多学习的过程以灵活的思维,解析三角函数的含义。交流中,告诉读者如何去学习,用贴近生活的实例来启发思考的途径,把每个章节的公式、应用问题观念串联。书中小平的错误也是许多人在学习过程中的盲点,可以说是最贴近学生的缩影。 为何要学?如何去学?学过之后如何应用?书中都有详细的阐述,不同于一般的教科书,它以幽默风趣的教学,带领读者领会数学的魅力,熟悉三角函数背后的运作逻辑,让对学习三角函数感觉挫折的学生,能够重拾信心,也帮助学生建立起归纳整理的学习能力,避免出现囫囵吞枣、拼命死背的情形,而导致学习流于形式。本书强调的一种思想是:数学不要死记硬背。告诉那些数学弱项的孩子,不要放弃数学,因为只要方法和方式正确,就能成为学习数学的武林高手。让你走出以背公式来应试的机械式学数学的沼泽,成为自由驾驭数学的主人。采用幽默的对话方式,带读者深入思考,深入浅出学习三角函数。你希望自己从看到公式就头大,一跃而成为一流的数学高手吗?阅读这本书,也许这个改变也会发生在你的身上。
-
反若尔当对[加]萨米娜.巴希尔本书就是这样一部提出了新的数学概念的英文数学专著,中文书名或可译为《反若尔当对:简单反若尔当对的自同构》。本书的作者为萨米娜.巴希尔(Samina Bashir),加拿大人,她是一位自由职业者,研究方向为非结合结构相关的半群与李代数。
-
球面空间形式群的几何学[美]彼得.B.吉尔基今天,拓扑的天使和抽象代数的精灵为每一个数学领域的灵魂而斗争.本书就是这样一部探讨分析学、几何学与拓扑之间关系的英文版学术专著.本书的中文书名可译为《球面空间形式群的几何学:第二版》.本书的作者为彼得·B.吉尔基(Peter B. Gilkey),他是美国人,俄勒冈大学教授.
-
算力邢庆科互联网的普及,大数据、云计算、5G、人工智能、区块链等技术的成熟,促成了数字经济的大繁荣。以计算能力为基础,万物感知、万物互联、万物智能的数字经济新时代正在到来。数据量呈爆发式增长,对算力的需求达到空前高度,算力成为数字经济的新引擎。《算力:数字经济的新引擎》共有8章,对算力及算力经济进行系统阐述,涉及新基建、新能源体系、数据资源、算力技术体系、基于新能源电力的算力中心、算力产业等;并从多个产业应用的角度,剖解算力对数字经济的驱动逻辑,帮助企业与个人找准发力的方向。《算力:数字经济的新引擎》适合互联网、人工智能、大数据、智能制造等数字经济领域的从业者,以及对数字经济感兴趣的行业人士阅读,也适合高等院校数字经济、计算机、大数据、人工智能等相关专业师生参考。
-
高等数学李伟 著本书依据**的“工科类本科数学基础课程教学基本要求”编写而成。本书注重培养学生用“已知”认识、研究、解决“未知”的能力;注重给学生营造一个启发式、互动式学习的氛围与环境,使学生在“边框”提出的问题的启发、引导、驱动下边思考、边读书、边总结;内容力求简明、引出尽可能直观,注重避免新的概念、结论、方法“从天而降”。同时注意为青年教师实施启发式、互动式教学提供一定的借鉴。本版在第一版的基础上,增添了部分章节内容;对数学软件与数学建模的实例进行了修改,数学软件改为了Python语言;更加注重文化育人,对“历史的回顾”及“历史人物简介”部分做了修改;对“边框”做了修改;增添了注记,扩大学生知识面,并将知识点加以总结,方便学生掌握。本书分为上、下两册,下册内容包括向量代数与空间解析几何,多元函数微分学、重积分,曲线积分与曲面积分、无穷级数等。本书可供高等学校非数学类专业学生使用,也可供科技工作者学习参考。
-
广义微分几何[法]帕特里克·伊格莱西亚斯-泽穆尔(Patrick Iglesias-Zemmour)上世纪末,微分几何受到了理论物理学的挑战:新的对象从经典理论的边缘转移到了几何学家的关注中心。理论物理对数学提出了新需求,于是诞生了广义微分几何(diffeology),本书是这一领域的第一部教科书,奠定了在理论物理中使用的微分几何主要领域的基础。广义微分几何(diffeology)是经典微分几何的一个全局性和包容性的扩展。全局性在于它将其对象扩展到流形之外的 (1)奇异空间,例如无理环面、轨形及叶状集;(2)无限维光滑函数集,微分同胚群、群胚等。这是一种包容性理论,因为在几何构造过程中产生的各种对象都自然带有广义微分结构,包括子空间、商、函数集、幂集等等。这是通过简化公理来实现的:集合上的广义微分结构规定集合中哪些参数化是光滑的。参数化是该理论的核心,它只是由一组数集索引的任意族。为了与通常的实数世界中的光滑性一致,这组参数化需要满足三个简单公理:覆盖、光滑兼容性和局部性。通过将视角从流形转移到一般的广义微分空间,我们得到了一个关于最常见的集合论运算(和、积、子集和商)的强封闭范畴。此外,光滑映射集在泛函广义微分结构下也自然是一个广义微分空间。换句话说,广义微分空间范畴是一个非常简单的完备、余完备和笛卡尔闭的范畴,并且包含流形作为一个满子范畴。许多例子表明,这种灵活性并没有丢失什么;相反,像无理环面这样的对象在几乎所有其它推广流形的方法中都是平凡的,而它们作为广义微分几何对象绝对是非平凡的,并且是有用的。广义微分几何这种公理式的范畴性质使许多定理和构造变得自然。我们可以在不切换范畴的情况下使用光滑路径或环路空间,这带来了深度简化。例如,环路空间上的微分学将许多经典定理简化为最简单的表达式,并强调了它们的高层本质。同时,它们给出了任何广义微分空间的恰当推广。同伦、同调、上同调、De Rham演算、纤维丛、联络、轨形、覆盖、辛几何、矩映射,所有这些经典构造都能在广义微分几何中自然实现。经典微分几何中的许多启发式构造(例如轨形、带角流形、分层等)实际上定义了明确的子范畴,而不需要通过调整或扭曲公理来实现。本书中包含了奇异空间和无限维空间的例子。通过这些例子和练习,读者可以熟悉广义微分几何中发展出来的具体技术。广义微分几何(diffeology)是一种强调实际操作的理论,是一种工具。有了这些经验,读者将能够把这一理论扩展到本书的范围之外。本书对研究微分几何或数学物理的学生与研究人员会非常有用。
-
学科体系中的数学文化陈克胜《学科体系中的数学文化》是在2006年出版的《数学文化概论》的基础上形成的,吸收了关于数学文化的最新研究成果,扩充了各学科与数学关系的内涵。进一步地说,《学科体系中的数学文化》在多年的教学实践基础上,对原有的《数学文化概论》进行了适当的扩充,以各学科与数学之间的关系为主线,强调数学在学科体系中的基础地位,阐述了数学在哲学、自然科学、文学、经济学、教育学、音乐、绘画、法律等学科中的应用、辩证关系和发展趋势,丰富了数学文化学研究。《学科体系中的数学文化》旨在满足大众关于数学在各学科中运用的好奇心和兴趣,丰富高校数学文化课程建设的内容,提升大众的数学素养。
-
非线性中立型泛函微分方程理论及数值分析王晚生本书较系统地讨论了非线性中立型泛函微分方程数值方法的稳定性、收敛性和耗散性。本书共8章,第1章介绍了中立型泛函微分方程数值分析的应用背景和研究进展;第2章致力于中立型泛函微分方程理论解的稳定性分析,为其算法分析奠定基础;第3章在一般的Banach空间中研究数值方法的稳定性和收敛性;第4—6章分别讨论了三种特殊类型中立型泛函微分方程的数值解法并分析这些数值方法的稳定性和收敛性;第7章讨论了数值方法的耗散性;第8章获得了中立型泛函微分方程数值方法的B-理论。书中有大量算例,为理论结果提供了实验验证。