数学
-
曲面的数学[美]理查德.埃文.施瓦兹本书从不同角度展开,把曲面看作度量空间、可三角剖分空间、双曲曲面等,讨论了曲面的相关性质。本书介绍了有关曲面的许多经典结论,有几何的、拓扑的,也有一些属于作者个人偏好,比如勾股定理、Pick定理、Green定理、Dehn分割定理、Cauchy刚性定理,以及代数基本定理。本书涉及的内容在其他书中都能找到,只不过它们不太能出现在同一本书中。每讲到一个话题,作者会告诉读者在哪里可以找到更多、更深的内容。本书适合高等院校师生及此方向相关爱好者阅读参考。 -
圆锥曲线全技法郭伟本书主要介绍了高考数学中圆锥曲线的内容,通过系统地梳理十几年来圆锥曲线高考真题和模拟试题,从圆锥曲线的知识点出发,以解题方法为分类标准,直击圆锥曲线的重、难点,归纳出圆锥曲线的热点题型,总结出圆锥曲线的解题方法,整理出圆锥曲线的解题技巧,并以此帮助读者建立趋于完善的圆锥曲线解题框架.读者可以通过阅读本书全面地了解高考数学中圆锥曲线试题的命题趋势,通过命题趋势洞察解题方向,从而能够更好、更快地掌握高考数学中的圆锥曲线知识.本书适合高二、高三的学生学习使用,希望通过学习本书,同学们能更好地解答高考数学中的圆锥曲线压轴题. -
数字与玫瑰蔡天新 著《数字与玫瑰》分初中版和高中版两册,均由三部分组成,分别对应于数学、文艺和旅行,每个部分有6篇文章。其中有一篇文章由十首诗组成,正文后还各附有一则访谈,系由京沪两地媒体采集,主题涉及理性和感性。两本书的区分,主要在于复杂性和作者个人感觉。本书可供初中生作为课外阅读材料,帮助开拓视野、累积语文写作素材、提升数学感悟。 -
基于R-INLA的SPDE空间模型的高级分析Elias Krainski Virg空间和时空连续过程的建模是空间统计学中一个重要且具有挑战性的问题。本书详细阐述了随机偏微分方程(SPDE)方法用于带有Matérn协方差结构的连续空间过程的建模。该方法已经在R-INLA软件包中采用集成嵌套拉普拉斯逼近(INLA)技术进行实现。本书通过使用模拟数据和真实应用程序的示例,解释了关于建模空间过程和SPDE方法的关键概念。 本书的作者都是空间统计学方面的权威人士,其中包括INLA和SPDE方法以及R-INLA软件包的主要开发者。此外,本书还包含了各种不同的应用实例。 本书中的所有例子都可以进行完全复现。此外,关于本书的更多信息以及使用的R代码和数据集,可在本书的网站上获取。 本书中介绍的工具将对许多领域的研究人员有所帮助,例如生物统计学、空间统计学、环境科学、流行病学、生态学等。此外,硕士生和博士生也会发现本书是学习INLA和SPDE方法进行空间建模的有价值的资源。 -
领先世界的中国古代数学侯捷,赵文君,赵宇涛 著在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从“记数”到“算术”的发展过程,了解被称为“中国数制”的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的“河图”与“洛书”、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。 -
线性系统的多级多时间尺度反馈控制(美)维瑞卡·拉迪萨夫耶维奇-加吉奇等《线性系统的多级时间尺度反馈控制及其在燃料电池中的应用》主要介绍了连续和离散时间域的两级反馈控制器设计算法,包括一般线性时不变动态系统的设计公式和代数方程,对双时间尺度线性时不变动态系统(奇异摄动系统)进行了简化和专门研究,对一般线性时不变动态系统的连续时间域三级反馈控制器设计也作了相应的介绍.《线性系统的多级时间尺度反馈控制及其在燃料电池中的应用》讨论了离散时间域三级三时间尺度系统线性反馈控制器以及四级四时间尺度线性反馈控制器设计.《线性系统的多级时间尺度反馈控制及其在燃料电池中的应用》还展示了反馈控制器设计算法在燃料电池中的应用示例. -
全译实践方法论黄忠廉等全译,即传统认同的完整性翻译。全译信守译作与原作极似的规律,包括直译与意译两大策略,遵循对应、增减、移换、分合四大机制,采用对、增、减、移、换、分、合七种手段,分别对应为对译、增译、减译、移译、换译、分译、合译七种方法。全译七法可单用、双用或多用(3—7种),以小句为中枢单位,如转万花筒,绘制出多彩的全译图景。 -
大气科学中的数学方法王曰朋,刘文军,胡广平 等《大气科学中的数学方法(第二版)》是在《大气科学中的数学方法》**版基础上修订而成, 较为系统地介绍了微分动力系统、摄动方法、小波分析、偏微分方程数值求解、变分与有限元方法、变分伴随方法、卡尔曼滤波资料同化方法等内容. 编写过程中注意到了学科交叉,力求做到数学知识处理上浅显易懂, 同时也考虑到了对相关气象内容的吸收,充分体现《大气科学中的数学方法(第二版)》的气象特色. 为方便读者参阅和自学, 对典型例题和算法的讲解补充了必要的 MATLAB 程序代码,各章内容也配备了适量习题. -
新东方 交叉小径的花园王亚晖 著.数学常常被视为一门令人头疼的学科,充满了难以理解的公式和符号。然而当我们回顾数学的起源时,会发现它的根源几乎遍布世界每个角落——在古埃及,人们为了测量土地,开创了几何学。在古希腊,数学家们追求着纯粹的数学真理,建立了一套完整的公理体系。而在中国,古代数学家以其独特的思维方式和贡献而闻名于世。历史上,杰出的数学家也像科学家、文学家、艺术家一样闪耀如星辰,为人类文明世界世界增添了无尽的光芒:莱布尼茨和牛顿几乎同时独立发明了微积分;“寒门贵子”高斯在多领域都作出了杰出贡献;爱琢磨的费马给后来学者们留下了“大坑”的;欧拉喜欢培养年轻人,被称为“所有人的导师”……无论是为了解决实际问题,还是满足好奇心的驱使,数学一直是人类进步的重要推动力。我们在书本里学得的只是冰山一角,而数学史的更广阔领域里,还隐藏着许多未知的宝藏等待我们去探索。希望你能够通过这本书走进数学,了解数学,爱上数学,用数学思维去洞察世界的奥秘。 -
分数阶复杂动态网络的控制与同步设计马维元本著作将深入研究分数阶复杂网络动态网络的控制与同步设计理论,重点探讨不同分数阶导数作用下复杂网络同步的实现和拓扑识别问题。具体工作主要包括以下四方面的内容:在经典分数阶微积分框架下探讨复杂网络的控制和同步条件。基于经典分数阶微积分理论,分别讨论了在牵制控制器和脉冲控制器作用下,有时滞和无时滞分数阶复杂网络的同步。在回火分数阶微积分框架下探讨复杂网络的控制和同步条件。得到了回火分数阶Caputo和Riemann–Liouville系统的Mittag–Leffler稳定性。基于辅助系统方法,探讨了回火分数阶复杂网络的同步。另外,基于同步方法实现了回火分数阶复杂网络的部分拓扑识别。在离散分数阶微积分框架下探讨复杂网络的控制和同步条件。实现了带有和不带有未知拓扑的分数阶离散复杂网络的同步。通过构造恰当的Lyapunov函数,利用分数阶差分的性质和矩阵不等式,得到了实现同步的条件。另外,探讨了短时记忆离散复杂网络的同步。④在Hadmard分数阶微积分框架下探讨复杂网络的控制和同步条件。给出了Hadmard分数阶系统的渐近稳定性定理。在此基础上,主要研究具有点对点单向耦合的两层网络的拓扑识别,其中一层(响应层)从另一层(驱动层)接收信息。 目标是构建一个理论框架,实现Hadmard分数阶复杂网络的同步及拓扑识别。该书为国家自然科学基金项目(41465002):?地形边界变化条件下的浅水方程求解及其动力学特征的成果。
