数学
-
俄罗斯数学经典Vladimir A.Zoric 著内容简介 《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。 《卓里奇数学分析教程》共两卷,第1卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。 《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
-
概率论与数理统计概率论与数理统计课程组 编《概率论与数理统计(第三版)(有微课)》适用于本专科教学使用。在前两版的基础上整理出版第三版。随机现象的普遍性以及现代经济分析方法的定量化趋势,使得概率论与数量统计的应用日渐广泛。《概率论与数理统计(第三版)(有微课)》是山东财经大学在多年教授概率论与数理统计课程的基础上编写而成。也是山东财经大学精品课程《概率论与数理统计》的一项重要的建设成果。为学生学习后续专业课程和从事经济研究奠定必要的基础。全书共分9章:随机事件与概率,一维随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,极限定理,统计量及抽样分布,参数估计,假设检验,方差分析与回归分析。《概率论与数理统计(第三版)(有微课)》科学、系统地介绍了概率论与数理统计的基本内容,重点介绍了概率论与数理统计的方法及其在经济管理中的应用,每章均配有习题,书末附有习题的参考答案。
-
数学分析历年考研真题解析陶利群本书精选了128套多所大学研究生考试中数学分析历年考试真题,书中大多数试题都给出了解答或提示,只有少数简单题目或不同年份出现的类似及相同题目略去了其答案.本书可作为报考数学专业硕士研究生复习数学分析的参考书,也可作为大学数学系新生学习数学分析的参考书.
-
时间序列分析及其应用[美] 罗伯特·沙姆韦,[美] 戴维·斯托弗 著◎内容简介 这本世界经典教材展现了现代时间序列分析作为一种数据分析工具的丰富性和多样性。本书从不同层次深入探讨时间序列分析理论和方法,除了涵盖经典的时间序列回归方法、ARIMA模型、谱分析和状态空间模型外,还介绍了新近发展的方法,包括分类时间序列分析、多元谱方法、长记忆时间序列、非线性模型、重采样技术、GARCH模型、ARMAX模型、随机波动率模型、小波方法和马尔可夫链蒙特卡罗积分方法等。书里以易于理解的方式讲述了各种时间序列模型及其应用,内容包括趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差模型、谱分析入门、谱估计和阈值模型等。对所有的模型和方法,都用真实数据集和模拟数据集进行了展示。本书除了可以作为统计学研究生或高年级本科生教材,也可以作为物理学、生命科学和社会科学领域相关方向的研究生教材。
-
随机数学引论何凤霞,叶振军 编随机过程是以动态随机现象为研究对象的科学,随机过程的理论和方法已广泛地应用于物理、生物、通信、管理、经济等各个领域,并且显示出越来越重要的作用。本教材基于随机过程的应用,侧重于介绍随机过程的基本理论和方法,略去一些艰深的定理证明,叙述表达力求简单易懂、逻辑清晰,所有的问题配以恰当的例题帮助理解,以方便学习者能够较快地了解并掌握随机过程的基本原理,并能够用于解决实际问题。全书共分9章。第1章简单回顾了概率论的基础知识,同时补充了特征函数、全期望公式、推广的全概率公式等随机过程学习过程中需要的一些定理和结论;第2章介绍了随机过程的基本概念、随机过程的有限维分布和数字特征以及相关函数的性质;第3章讨论齐次泊松过程的性质,给出了到达时间、时间间隔等几个泊松过程重要随机变量的分布以及条件分布;第4章介绍了非齐次泊松过程和复合泊松过程;第5章介绍了马尔可夫过程,讨论了转移概率、绝对分布以及极限分布;第6章介绍了布朗运动以及布朗运动的几种变化;第7章介绍了随机分析,这是研究平稳过程必备的基础;第8章与第9章分别在时域和频域研究平稳过程的性质。本教材适合工科类和管理类的研究生以及相关课程的教师使用,也适合数学系以及有高等数学、概率论和积分变换基础的本科生作为入门学习的教材使用。
-
王戌堂文集王戌堂王戍堂教授一直恪守“做人要透明,做学问要透明”“做学问首先是做人”“科学就是奉献”“对待科学事业,不仅要有爱心,还要有忠心”的为人治学理念,传承科学精神的使命感和提携后人的责任感促使他一直屹立在教书育人的前沿。他把学术研究当作**乐趣,甚至将其视为超过自己的生命。他一生甘于坐冷板凳,严谨治学、潜心科研,执着于追求科学真理。他一生淡泊名利、甘为奉献,从而立之年至耄耋之际,大半个世纪如一日,甘为红烛、不辍耕耘。他退休之后仍然坚持为学生义务开设数学公益课堂十余载,“莫道桑榆晚,为霞尚满天”。本书收录了王戍堂文集,不仅有助于挖掘历史文化资源、把握学术延展脉动、推动文明交流互动,为西北大学综合改革和“双一流”建设提供强大的精神动力,也必将为推动整个高等教育事业发展提供有益借鉴。
-
堆块几何冯煤生如果说玩积木是人生第一次接触几何,那么,多数人再次接触几何则要等到初中学习平面几何。中间这段时间除了解一些简单几何形体的知识,包括面积和体积,之外,没有真正的几何学内容。中学的平面几何与立体几何都来自欧几里得几何,欧氏几何是古埃及与古希腊上千年几何知识的总结与提升,是公理化方法的典范,内容有一定难度,容易造成学习分化;因此,需要一种过渡的,将玩与学结合起来的几何学习内容。堆块几何填补了这个空白。本书不是介绍摆放形体的思维与操作技巧,而是诠释一种重要的科学方法——公理化方法。把简单的积木摆放游戏提升为使用规定工具和公理化方法,需要思考、探究与创造的趣味几何研究。简单、容易的事情是无趣的,这就是脱离幼儿期的儿童不再玩积木的原因。堆块几何要让人们,不只是儿童,重新玩积木,并在玩的过程中体验思考、研究与创造的有趣过程。全书分为上下两册,上册《堆块几何基础》介绍堆块几何概要和公理化方法所需的定义、规定、公理及公设;对问题与命题,思维与操作的关系给出简明的解释;通过明确空间形体的形状概念、给出形状变换想象与操作的符号表示,展开对空间想象与思维能力的训练内容。下册《堆块几何入门》展开堆块几何的学习内容,包括命题的分析与证明,堆块形体的设计、研究(随块数增加而深入)、创造和结构记录方法;作为给教师的建议,还介绍了创建堆块学园和互动学习社区的方法。上册从第0章至第5章。第0章介绍作为公理化方法教学资源的堆块几何,包括数学元素的引入、符号记录方法、内容提要与教学功能。第1章给出堆块形体构建工具和方法的定义与规定。第2章介绍堆块几何的公理、公设和命题。第3章涉及发现问题与提出命题的方法,介绍了问题与问句的相关知识。第4章分析了摆放堆块形体时的思维与操作及其相互关系。第5章介绍了堆块形体的形状变换和利用这种变换培养空间想象力的空间思维训练方法,为进一步展开学习内容奠定基础。下册从第6章开始,介绍了堆块几何证明的公理化方法和通过分析与思考完成求知任务的过程。第7章涉及堆块形体的设计与思考,通过区分设计与涂鸦行为,使堆块积木摆放游戏成为一种设计与研究活动,第8章通过平面形状与立体形体的设计、证明与猜想,展示了堆块几何的学习内容。第9章介绍了立体形状的记录方法、堆块形体的三视图判断和形体内部结构的分层记录方法,为堆块几何研究成果的交流奠定了基础。第10章展开了不同难度堆块形体的构造和创造研究,介绍了创建堆块学园和互动学习社区的方法。在很多科学家眼里,科学就是兴趣的乐园,他们就像充满好奇心的天真孩子,兴趣和爱好引导他们作出非凡的发现与创造。堆块几何就是要让更多人体验这种乐趣,理解并尝试探索、发现与创造的人生,成为有科学品位的人。
-
高等数理统计教程韦博成 著本书全面系统地介绍了数理统计的原理、方法及其应用。全书共分八章,涵盖了数理统计的主要内容,其中包括:常见的统计分布;充分统计量和信息函数;点估计的基本理论和方法;假设检验的理论、方法及其应用;区间估计及其应用;Bayes统计推断的基本概念和方法。掌握本书内容即可比较顺利地理解其他学科中用到的统计方法。本书可作为高等学校统计学类专业高年级及研究生教材,以及经济金融、工程技术、生物医学等专业研究生的教学参考书,也可供相关专业的教师和科技人员参考。
-
柯西-施瓦茨大师课J. Michael Steele 著这本以问题为导向的生动的教科书,旨在指导读者掌握基本的数学不等式及其应用。作者从柯西-施瓦茨不等式讲起,向读者展示一系列与不等式有关的引人入胜的问题,并以乔治?波利亚的风格来指导读者求解它们,在讲授基本概念的同时,提升解决问题的技巧。这些问题的形式优美,内容出人意料。通过研究它们,读者可以系统学习如下的内容:平方的几何、凸性、幂平均的阶梯、控制、舒尔凸、指数和、赫尔德不等式、希尔伯特不等式和哈代不等式。 本书适合数学、理论计算机科学、统计学、工程学和经济学的高年级本科生和研究生阅读,也可作为分析学、概率论及组合学课程的补充材料。
-
生物数学徐克学本书为中国科学院研究生教学丛书之一。《BR》生物数学是20世纪生物学飞速发展中产生的一门新兴边缘学科。生物数学的基本理论与方法对当代生物学的发展产生重大影响,并在生物学有关领域得到广泛应用。本书对生物数学的发展历史、基本原理、数学方法及其在生物学领域中的应用作了比较系统的介绍。书中部分内容出自著者的科研和教学成果,如演化集合论、二元数据的数据处理和计算方法、生物信息论中的离散论、马尔柯夫链中的带输入马尔柯夫状态序列以及系统与控制论中的部分理论。本书内容适应了当代生物学研究工作对新理论知识和新技术方法的需要,有一定的深度和广度。