数学
-
求解非线性偏微分方程的分析方法[美]丹尼尔·J.阿里戈本书是一本获得非线性偏微分方程(NLPDEs)精确解的介绍性书籍。本书包含了非线性PDEs无处不在、相容性、微分替换、点变换与接触变换、第一积分、泛函可分性、解等内容。 -
数学-简单与高深席南华本书由数学通俗文章和讲话的讲稿等组成, 此外还有一篇关于数学史的翻译文章和一个座谈会实录. 数学通俗文章的主题有: 数学概述, 数学的意义;对称; 几何——从熟悉到陌生; 基础数学的一些过去和现状; 数学——简单与高深; 朗兰兹纲领寻根之旅; 黎曼猜想——引无数英雄竞折腰; 简说代数; 表示, 随处可见; 几何表示论; 卡兹旦-路兹蒂格理论: 起源、发展、影响和一些待解决的问题. 翻译文章是韦伊的“数学史: 为什么, 怎么看”. 讲话的讲稿主要包含作者在一些纪念、庆祝、任职、卸任等公开场合上的讲话讲稿. 座谈会实录说的是2014 年作者与怀化学院本科生座谈的记录. -
数字与玫瑰蔡天新 著《数字与玫瑰》分初中版和高中版两册,均由三部分组成,分别对应于数学、文艺和旅行,每个部分有6篇文章。其中有一篇文章由十首诗组成,正文后还各附有一则访谈,系由京沪两地媒体采集,主题涉及理性和感性。两本书的区分,主要在于复杂性和作者个人感觉。本书可供初中生作为课外阅读材料,帮助开拓视野、累积语文写作素材、提升数学感悟。 -
线性系统的多级多时间尺度反馈控制(美)维瑞卡·拉迪萨夫耶维奇-加吉奇等《线性系统的多级时间尺度反馈控制及其在燃料电池中的应用》主要介绍了连续和离散时间域的两级反馈控制器设计算法,包括一般线性时不变动态系统的设计公式和代数方程,对双时间尺度线性时不变动态系统(奇异摄动系统)进行了简化和专门研究,对一般线性时不变动态系统的连续时间域三级反馈控制器设计也作了相应的介绍.《线性系统的多级时间尺度反馈控制及其在燃料电池中的应用》讨论了离散时间域三级三时间尺度系统线性反馈控制器以及四级四时间尺度线性反馈控制器设计.《线性系统的多级时间尺度反馈控制及其在燃料电池中的应用》还展示了反馈控制器设计算法在燃料电池中的应用示例. -
全译实践方法论黄忠廉等全译,即传统认同的完整性翻译。全译信守译作与原作极似的规律,包括直译与意译两大策略,遵循对应、增减、移换、分合四大机制,采用对、增、减、移、换、分、合七种手段,分别对应为对译、增译、减译、移译、换译、分译、合译七种方法。全译七法可单用、双用或多用(3—7种),以小句为中枢单位,如转万花筒,绘制出多彩的全译图景。 -
新东方 交叉小径的花园王亚晖 著.数学常常被视为一门令人头疼的学科,充满了难以理解的公式和符号。然而当我们回顾数学的起源时,会发现它的根源几乎遍布世界每个角落——在古埃及,人们为了测量土地,开创了几何学。在古希腊,数学家们追求着纯粹的数学真理,建立了一套完整的公理体系。而在中国,古代数学家以其独特的思维方式和贡献而闻名于世。历史上,杰出的数学家也像科学家、文学家、艺术家一样闪耀如星辰,为人类文明世界世界增添了无尽的光芒:莱布尼茨和牛顿几乎同时独立发明了微积分;“寒门贵子”高斯在多领域都作出了杰出贡献;爱琢磨的费马给后来学者们留下了“大坑”的;欧拉喜欢培养年轻人,被称为“所有人的导师”……无论是为了解决实际问题,还是满足好奇心的驱使,数学一直是人类进步的重要推动力。我们在书本里学得的只是冰山一角,而数学史的更广阔领域里,还隐藏着许多未知的宝藏等待我们去探索。希望你能够通过这本书走进数学,了解数学,爱上数学,用数学思维去洞察世界的奥秘。 -
圆锥曲线论(古希腊)阿波罗尼奥斯 著;朱恩宽等 译《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。 -
高等数学精选750题宋浩本书针对大学高等数学上学期的课程内容 — — 函数与极限、导数与积分、微分中值定理与导数应用、不定积分、定积分以及应用、微分方程 — — 精心设计了750道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰,非常适合想要打牢高等数学基础,以及准备参加专升本、研究生考试的学生使用。 -
分数阶复杂动态网络的控制与同步设计马维元本著作将深入研究分数阶复杂网络动态网络的控制与同步设计理论,重点探讨不同分数阶导数作用下复杂网络同步的实现和拓扑识别问题。具体工作主要包括以下四方面的内容:在经典分数阶微积分框架下探讨复杂网络的控制和同步条件。基于经典分数阶微积分理论,分别讨论了在牵制控制器和脉冲控制器作用下,有时滞和无时滞分数阶复杂网络的同步。在回火分数阶微积分框架下探讨复杂网络的控制和同步条件。得到了回火分数阶Caputo和Riemann–Liouville系统的Mittag–Leffler稳定性。基于辅助系统方法,探讨了回火分数阶复杂网络的同步。另外,基于同步方法实现了回火分数阶复杂网络的部分拓扑识别。在离散分数阶微积分框架下探讨复杂网络的控制和同步条件。实现了带有和不带有未知拓扑的分数阶离散复杂网络的同步。通过构造恰当的Lyapunov函数,利用分数阶差分的性质和矩阵不等式,得到了实现同步的条件。另外,探讨了短时记忆离散复杂网络的同步。④在Hadmard分数阶微积分框架下探讨复杂网络的控制和同步条件。给出了Hadmard分数阶系统的渐近稳定性定理。在此基础上,主要研究具有点对点单向耦合的两层网络的拓扑识别,其中一层(响应层)从另一层(驱动层)接收信息。 目标是构建一个理论框架,实现Hadmard分数阶复杂网络的同步及拓扑识别。该书为国家自然科学基金项目(41465002):?地形边界变化条件下的浅水方程求解及其动力学特征的成果。 -
有限群构造新论陈松良 著有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。《有限群构造新论》介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,《有限群构造新论》详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。《有限群构造新论》可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
