数学
-
小波分析基础李新,陈发来《小波分析基础:从理论到应用》详细介绍小波变换的起源、原理和应用, 内容覆盖傅里叶变换、窗口傅里叶变换、框架理论、连续小波变换、多分辨率分析、Daubechies小波分析基础:从理论到应用小波分析基础:从理论到应用正交小波、小波包、小波提升理论以及小波在信号处理和图像处理等方面的应用, 涵盖了发展比较成熟的小波分析的所有基本内容. 另外, 《小波分析基础:从理论到应用》特别关注实际应用和数学理论之间的关联, 强调解决实际问题中的数学原理以及解决问题所需要的数学思维和方法.
-
波利亚计数定理萧文强本书从第2章开始逐步引入群的概念,并通过众多例子阐述群的基本性质。第3章介绍群在集上的作用,也用了大量例子说明一个重要的公式,这个公式可以说是波利亚计数定理的前奏。第4章引入权的概念,把前一章的思想推广,本书的主角——波利亚计数定理:也就登场了。第5章介绍这条定理的一项重要应用,是化学上同分异构体的计数问题,在叙述过程中同时介绍了母函数的概念。最后加了一个附录,叙述群这个概念怎样从古典代数的解方程问题产生,希望通过了解前人的业绩提高读者的学习兴趣。
-
孟祥礼高考数学精刷精解孟祥礼本书从2018年至2022年的高考数学全国卷真题中筛选出能够体现高考评价体系“一核”“四层”“四翼”与“考查载体”要求的经典试题235道作为例题,对每道例题都精心解答,给出2种或3种解(证)法(陈题新解、常题速解、佳题巧解、繁题简解、难题易解和一题多解),借此将题目背后所涉及的数学概念、定义、公式、定理、规律及其周边的知识进行全覆盖地复习,帮助学生将零散的、死板的知识变成系统的、充满活性的、便于应用的知识链,将隐藏于教科书深处的数学思维方法和解题技巧变成自己的核心数学素养,使之思潮如泉涌,形成联系紧密的题目和解(证)法的立体网状系统,让学生真正悟明数学、掌握数学,解透一题通百题,切身体验那种身凌绝顶,一览众山小的舒畅和满足.本书适合高中生、高中数学教师、数学教研员和数学爱好者阅读,系高中生学习解数学题、迎接新高考的良师益友,也系年轻高中数学教师和数学教研员研究高考数学试题不可多得的参考用书.
-
初高中数学核衔接李德安本书主要围绕初高中数学的核心知识、常用方法、数学思想、典型问题等内容展开介绍,真正落实数学核心素养.全书共4章:第1章为核心知识再认识——根枝联结篇,主要是对已有数学知识的深度认识;第2章为常用方法再梳理——道法自然篇,主要是对常用的解题方法进行梳理;第3章为数学思想再提升——横跨九霄篇,主要是对分类讨论思想、数形结合思想、函数与方程思想、化归与转化思想的内容进行研究;第4章为典型问题再剖析——扶摇直上篇,是对初中阶段典型的数学问题进行深入的剖析.最后还给出了每节后习题对应的参考答案.本书适合应届初中毕业生,以及中学数学教育者和数学爱好者参考使用.
-
四面体几何学引论曾建国著本书主要收集了四面体几何元素的位置关系研究的新成果,全书分为两篇,共十章。本书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,并得到一系列四面体中的共点、共面、共球等性质。希望本书的出版能为读者进一步开展四面体几何学研究提供参考。本书可供中学数学教师及高中生、大学生在内的广大几何爱好者阅读,也可用作几何学及数学教育相关方向硕士研究生的教学参考书。
-
绳圈的数学姜伯驹我们将在第一章介绍关于纽结与链环的基本概念,然后在第二章用上面提到的初等讲法来介绍琼斯多项式,并在第三章用它来证明泰特关于交错纽结的猜测.这是本书的一条主线,这条主线可以叫作绳圈的拓扑学.
-
双碳背景下首都都市圈交通智慧融合发展王超 著目前我国都市圈和城市群逐步成为支撑国民经济发展的增长极。北京的首都功能定位,不仅具有特殊意义,也在国家都市圈的发展中具有标杆作用。交通是碳排放的主要领域,也是碳减排的重点、难点。本书针对首都都市圈绿色交通发展问题,围绕交通与城市功能的融合及多交通方式间融合提出诸多对策,以期为国家“双碳”目标的实现和京津冀协同发展战略的有序实施贡献绵薄之力。本书撰写过程正值全球新冠疫情期间,为真实反映客观情况,部分数据采用2019年的统计数据。
-
逻辑人生约翰·L. 卡斯蒂,维尔纳·德波利库尔特·哥德尔是一个智慧巨人。他的不完全性定理不仅改变了数学,而且改变了整个科学世界和建筑于此定理之上的哲学。哥德尔定理粉碎了逻辑最终将使我们理解整个世界的梦想,同时也引发了许多富有挑战性的问题:什么是理性思维的界限?我们能够完全理解我们自己造的机器吗?我们能够搞清楚我们心智的内在工作过程吗?当研究结果缺乏逻辑的确定性时,数学家还怎么继续工作?在这本书里,我们最终遇到了置身于这些深邃思想背后的那个人。约翰·L.卡斯蒂和维尔纳·德波利为我们描述了一个复杂的人物:既入世又遁世,既雄心勃勃又固执己见。正像卡斯蒂和德波利所明断的那样,哥德尔的影响是持久不衰的。他的工作不仅使数学发生革命性的变化,而且波及哲学、语言学和计算机科学,甚至还包括宇宙学。
-
一个应用数学家的辩白[美]劳埃德·尼克·特雷费森(Lloyd Nick Trefethen)本书是数值分析家劳埃德·尼克·特雷费森教授的心得之作。除了回顾早期学习数学的成长过程,以及深耕数值分析领域的心路历程,本书还体现了特雷费森教授对数学本身的深刻思考、对纯数学和应用数学的真切感悟,以及对数学所面临的挑战的反思。 本书适合对数学史、数学思想和数学教育,以及纯数学和应用数学感兴趣的所有读者。
-
几何基础David Hilbert《几何基础》是数学大师希尔伯特的一部名著,首次发表于1899年,该书第一次给出了完备的欧几里得几何公理系统。全体公理按性质分为五组(即关联公理、次序公理、合同公理、平行公理和连续公理),他对它们之间的逻辑关系作了深刻的考察,精确地提出了公理系统的相容性、独立性与完备性要求。为解决独立性问题,他的典型方法是构作一个模型,不满足所论的公理,但却满足所有其他公理。采用这种途径可赋予非欧几何以严密的逻辑解释,同时开拓了建立其他新几何学的可能性。对于相容性问题,他的重大贡献是借助于解析几何而将欧氏几何的相容性归结为初等算术的相容性。上述工作的意义远超出了几何基础的范围,而使他成为现代公理化方法的奠基人。