数学
-
分析中的多值映射[俄]鲍里斯·格利曼本书是一部版权引自俄罗斯的俄文版数学专著,中文书名可译为《分析中的多值映射:部分应用》。本书作者是鲍里斯.格利曼,俄罗斯人,物理和数学科学博士,毕业于沃罗涅日国立大学,现在沃罗涅日国立大学函数和几何学理论教研室教授。 -
数学奇趣[美国][美]阿尔弗雷德?S.波萨门蒂 著,涂泓 译,冯承天 译校这本书中提供了大量的趣味数学例子,包括几何、代数、概率、逻辑,以及其他一些领域。我们可以用不寻常但令人惊叹的数学知识逗乐大家。其中一些例子可能非常简单,甚至什么都不需要解释就可以达到目的。还有一些例子会被认为很了不起,它们能够引导读者真正欣赏数学,因为也许他们在学生时代没能意识到这一点。通过这些简短的例子,我们希望能让你感受到数学领域所能提供的许多意想不到的和违反直觉的乐趣。 -
工时可变的排序模型与算法张新功在排序问题的研究中, 一方面问题模型求解方法的多样性, 另一方面实际的生产和服务需求使得问题新模型不断涌现, 使得经典排序的基本假设被不断突破. 工时可变的排序问题, 是一类非常重要的非经典排序问题.本书介绍了工时可变排序问题的重要性和现实意义, 介绍了三类工时可变的排序问题, 以及在重新排序中的应用. 本书介绍了基本方法、理论和基础知识, 阐述了时间相关的排序问题、工期相关的排序问题、工件加工时间之和相关的排序问题, 以及重新排序在学习或者退化效应中的应用. 研究技术和内容涉及成组技术、资源约束分配、窗时排序、准时排序以及拒绝费用限制等相关的排序模型、问题特性、复杂性分析和优化算法. -
二阶锥互补问题求解方法研究王国欣 著本书主要介绍了线性二阶锥互补问题的矩阵分裂法和随机线性二阶锥互补问题的求解方法。对于线性二阶锥互补问题,提出了一种正则化并行矩阵分裂法,正则化参数是单调递减趋于零的,在合适的条件下,新算法具有收敛性,而且算法可以并行实现,特别是子问题能够精确求解。 对于随机线性二阶锥互补问题,利用不同的二阶锥互补函数和期望残差极小化模型,把随机线性二阶锥互补问题转化成无约束最优化问题,利用蒙特卡罗方法对问题进行了近似,讨论了期望残差极小化问题和近似问题解的存在性以及收敛性,并利用该理论对具有辐射状网络结构的电力系统随机最优潮流问题和天然气运输问题进行了研究,数值结果表明了所提方法的有效性。 -
数学问题(德)D.希尔伯特 著;李文林 袁向东 编译本书选编了希尔伯特在1900年巴黎国际数学家代表大会上的著名讲演《数学问题》。希尔伯特在该讲演中阐述了他对数学的本质、数学知识的来源、数学问题的重要性及研究方法的精辟见解。他在讲演中提出的23个数学问题,激发了整个数学界的想象力,推动了20世纪数学的发展。 -
初高中数学核衔接李德安本书主要围绕初高中数学的核心知识、常用方法、数学思想、典型问题等内容展开介绍,真正落实数学核心素养.全书共4章:第1章为核心知识再认识——根枝联结篇,主要是对已有数学知识的深度认识;第2章为常用方法再梳理——道法自然篇,主要是对常用的解题方法进行梳理;第3章为数学思想再提升——横跨九霄篇,主要是对分类讨论思想、数形结合思想、函数与方程思想、化归与转化思想的内容进行研究;第4章为典型问题再剖析——扶摇直上篇,是对初中阶段典型的数学问题进行深入的剖析.最后还给出了每节后习题对应的参考答案.本书适合应届初中毕业生,以及中学数学教育者和数学爱好者参考使用. -
静电加速器[瑞]朗纳·海尔伯格(Ragnar,Hellborg),[美]哈里·J.惠特洛(Harry,J.Whitlow)《静电加速器:一个多功能工具(英文)》是一部应用物理学的英文专著,中文书名可译为《静电加速器:一个多功能工具》。作者有两位,一位为朗纳·海尔伯格,瑞典隆德大学物理系应用物理学的名誉全职教授,他在应用物理学领域使用静电加速器工作了50多年,另一位是哈里·J.惠特洛,美国物理学家。他是美国拉斐特路易斯安那大学物理学教授兼路易斯安那加速器中心主任。《静电加速器:一个多功能工具(英文)》的目标是收集静电加速器领域的基础科学信息和技术信息,使其成为加速器工程师以及从事静电加速器研究的学生和研究人员的指南、参考手册和教科书。 -
非线性算子不动点问题的迭代算法及其应用何振华,李蓉《非线性算子不动点问题的迭代算法及其应用》研究了非线性算子不动点问题迭代逼近的收敛算法。这些算法包括相同空间下的一些非线性算子不动点问题的迭代序列,也包括不同空间下一些非线性算子不动点分裂问题的迭代序列,并在合适的条件下验证了这些算法具有强收敛或者弱收敛性。《非线性算子不动点问题的迭代算法及其应用》给出了许多非常初等的例子,并通过这些例子说明一些非线性算子的关系、有界线性算子范数的计算等,使得更容易理解这些抽象的非线性算子概念及其不动点迭代算法。 -
一个应用数学家的辩白[美]劳埃德·尼克·特雷费森(Lloyd Nick Trefethen)本书是数值分析家劳埃德·尼克·特雷费森教授的心得之作。除了回顾早期学习数学的成长过程,以及深耕数值分析领域的心路历程,本书还体现了特雷费森教授对数学本身的深刻思考、对纯数学和应用数学的真切感悟,以及对数学所面临的挑战的反思。 本书适合对数学史、数学思想和数学教育,以及纯数学和应用数学感兴趣的所有读者。 -
相对论多体理论与统计力学[以]劳伦斯.P.霍维茨在书中,作者描述了斯图克尔伯格、霍维茨和皮隆理论,该理论为多体问题的讨论提供了一个全面的、经典的和量子力学相对论的协变量框架。该理论的本质特征是爱因斯坦的时间t,即在惯性实验室的标准通用时钟上测量的事件到达时间,也对应于麦克斯韦方程中出现的变量t,其被认为是一个可观察量。事件发生的时间t是主题,还有事件x的位置,其根据是与牛顿假设时间相对应的通用演化参数τ的运动方程。这个参数的广泛性使我们可以为相对论多体系统编写经典动力学和量子动力学方程。在这个框架中,还发展了相应的相对论明显的协变量子场论。
