人工智能
-
基于深度学习的机器阅读理解张鑫,樊静《基于深度学习的机器阅读理解》介绍了基于深度学习的机器阅读理解技术,内容涵盖:任务定义与分类、发展历程、模型评测和典型应用;多层感知机、表示学习、卷积网络、循环网络、注意力机制等深度学习基础;基于深度学习的机器阅读理解技术的共性框架;指针网络等代表性模型,以及它们与共性框架的对应关系;本领域的新动向、新趋势,及尚待解决的开放性问题。最后,附录中简介了机器学习和文本分析基础,引入经典机器阅读理解技术,并汇总了《基于深度学习的机器阅读理解》涉及的英文简称和互联网上公开可用的模型算法源码。
-
人工智能产业领域发展态势研究刘宗敏 等本书从产业政策、市场规模、投融资情况、发明专利申请、SCI论文发表、顶级会议论文发表、知名机构等方面,对世界主要国家(地区)在人工智能基础层、技术层、应用层的发展态势开展研究。评估得出人工智能产业各个板块不同领域的主要创新实体(国家或地区)、企业、研究机构的基础研究水平、前沿技术创新能力以及产业化应用情况等,提出我国具体开展国际科技创新合作的重点国家(地区)与机构等。另一方面,从中国视角出发,对在人工智能产业领域开展国际科技创新合作进行SWOT分析,为人工智能领域的科研工作者全面认识人工智能领域发展态势提供依据,为人工智能领域产业政策制定者提供数据支撑。
-
机器翻译肖桐,朱靖波 著利用机器翻译技术实现不同语言之间的自由交流始终是最令人期待的计算机应用之一。本书全面回顾了近30年来机器翻译的技术发展历程,遵循机器翻译技术的发展脉络,对基于统计和基于端到端深度学习的机器翻译关键技术及原理进行了深入讲解,力求做到简洁明了、全面透彻、图文结合。此外,本书着重介绍了近年来机器翻译领域的科研热点及其结果,旨在帮助读者全面了解机器翻译的前沿研究进展和关键技术。
-
TensorFlow开发入门太田满久,须藤広大,黑泽匠雅,小田大辅 著,杨鹏 译《TensorFlow 开发入门》是一本面向 AI 工程师的入门书籍,介绍了从 TensorFlow 基 础知识到使用一个高级 API——Keras 构建深度学习模型的相关内容。全书共 12 章,分 2 部分进行介绍,其中第 1 部分为基础篇,介绍了深度学习、TensorFlow 和 Keras 的基础知识; 第 2 部分为应用篇,介绍了如何使用 Keras 在图像处理中构建深度学习模型,如“噪声去 除”“自动着色”“超分辨率成像”“画风转换”和“图像生成”等。本书示例丰富,可操 作性较强,配套代码与 Jupyter Notebook 兼容,特别适合想从事人工智能开发、机器学习 / 深度学习工程师作为参考书学习。
-
深度学习视频理解张皓 著视频理解是计算机视觉和深度学习的一个重要分支。本书对视频理解的3个重要领域进行介绍,对于每个领域,本书不仅解释了相关算法的原理,还梳理了算法演进的脉络。全书共分6章,第1章简要介绍视频行业的发展历程;第2章回顾经典图像分类模型和RNN;第3章和第4章介绍动作识别的重要算法;第5章介绍时序动作定位的重要算法;第6章介绍视频Embedding的重要算法。最后总结了常用的一些视频处理工具。 本书既适合高等院校人工智能相关专业的本科生和研究生阅读,也可供视频理解、推荐系统、搜索引擎和计算广告等领域的研究人员和从业者参考。
-
Python深度学习[保] 伊凡·瓦西列夫(Ivan Vasilev) 著,冀振燕,赵子涵,刘伟,刘冀,瑞董为 译本书集合了基于应用领域的高级深度学习的模型、方法和实现。本书分为四部分。第1部分介绍了深度学习的构建和神经网络背后的数学知识。第二部分讨论深度学习在计算机视觉领域的应用。第三部分阐述了自然语言和序列处理。讲解了使用神经网络提取复杂的单词向量表示。讨论了各种类型的循环网络,如长短期记忆网络和门控循环单元网络。第四部分介绍一些虽然还没有被广泛采用但有前途的深度学习技术,包括如何在自动驾驶上应用深度学习。学完本书,读者将掌握与深度学习相关的关键概念,学会如何使用TensorFlow和PyTorch实现相应的AI解决方案。
-
智能风控平台郑江 著本书讲解了如何基于不同业务场景的智能风控方法来构建一个从数据到计算再到决策的通用智能风控平台,该平台既能应用于业务的全流程,又能承载互联网业务中的大部分风险控制方案。全书从智能风控的原理、智能风控平台的架构、智能风控平台的产品设计与实现3个维度展开:第1部分(第1~3章)从智能风控的定义、演进以及智能风控如何与业务结合等方面介绍了智能风控的基础知识和原理;第二部分(第4~5章)详细讲解了智能风控平台的业务架构、功能架构和技术架构,为智能风控平台的设计与实现打下基础;第三部分(第6~7章)从产品设计与实现的角度讲解了智能风控平台的核心系统,如决策引擎系统、指标管理系统、接口管理系统、风险管理系统,以及次核心系统,如贷中监控系统、贷后管理系统、平台管理系统等。
-
神经网络与深度学习[美] 查鲁·C.阿加沃尔 著本书涵盖了经典和现代的深度学习模型。章节分为三类:第1部分为神经网络的基础。许多传统的机器学习模型可以理解为神经网络的特殊情况。前两章的重点是理解传统机器学习和神经网络之间的关系。支持向量机、线性/逻辑回归、奇异值分解、矩阵分解和推荐系统都是神经网络的特例。本书将这些方法与特征工程方法如word2vec一起进行了研究。第2部分是神经网络的基本原理。训练和正则化的详细讨论在第3章和第4章提供。第5章和第6章介绍了径向基函数(RBF)网络和受限的玻尔兹曼机。第3部分是神经网络的高级主题:第7章和第8章讨论了循环神经网络和卷积神经网络。第9章和第10章介绍了几个高级主题,如深度强化学习、神经图像机、Kohonen自组织映射和生成对抗网络。这本书是为研究生、研究人员和实践者编写的。大量的练习和一个解决方案手册,以帮助在课堂教学。在可能的情况下,突出显示以应用程序为中心的视图,以便提供对每一类技术的实际用途的理解。
-
嵌入式深度学习[比利时] 伯特·穆恩斯,[美] 丹尼尔·班克曼,[比利时] 玛丽安·维赫尔斯特 著本书介绍了实现嵌入式深度学习的算法和硬件实现技术。作者描述了应用、算法、电路级的协同设计方法,这些方法有助于实现降低深度学习算法计算成本的目标。这些技术的影响显示在四个用于嵌入式深度学习的硅原型中。
-
智能机器人养成记[英] 马克·H.李(Mark H.Lee) 著,刘红泉 译在本书中,作者先描述了人工智能的缺陷(一个关键的缺点是:它没有具象化),然后提出了一种制造类人机器人的不同方法:成长型机器人,它受到成长心理学及其对早期婴儿行为的描述的启发。他讲述了自己对iCub类人机器人的实验,以及它从新生儿水平到相当于9个月大的婴儿的能力水平的成长,解释了iCub如何从自己的经验中学习。