人工智能
-
动手打造深度学习框架李伟 著本书基于 C++编写,旨在带领读者动手打造出一个深度学习框架。本书首先介绍 C++模板元编程的基础技术,然后在此基础上剖析深度学习框架的内部结构,逐一实现深度学习框架中的各个组件和功能,包括基本数据结构、运算与表达模板、基本层、复合层、循环层、求值与优化等,最终打造出一个深度学习框架。本书将深度学习框架与 C++模板元编程有机结合,更利于读者学习和掌握使用 C++开发大型项目的方法。本书适合对 C++有一定了解,希望深入了解深度学习框架内部实现细节,以及提升 C++程序设计水平的读者阅读。
-
TensorFlow 2 人工神经网络学习手册[印度] P.萨朗(Poornachandra Sarang)著随着深度学习理论的不断发展以及 TensorFlow 的广泛应用,基于深度学习的信号分析模型在不同领域产生了深远的影响。本书为TensorFlow 2的使用指南,从软件安装、数据下载、文件管理等方面入手为初级开发者提供细致而全面的介绍。在此基础上,本书系统地介绍了TensorFlow 2在人工神经网络实战项目中的应用,全面覆盖了各种深度学习架构,内容涉及:入门级的二分类模型、回归模型等;进阶级的文本生成模型、图像生成模型、机器翻译模型、时序预测模型等;以及的Transformer模型等。在每个项目中,本书完整地展示了模型设计、网络搭建、模型训练、模型保存、结果预测与显示的全过程,并提供了详细的实现代码。本书将深度学习理论与实际项目结合,为初学者搭建了进入人工智能领域的学习平台,为深度学习算法开发者提供了较为全面的应用范例,充分满足了不同群体的学习需求。
-
TensorFlow深度学习项目实战[美] 卢卡·马萨罗(Luca Massaron) 等 著,魏博,刘昌灵,司竹月,刘小晴 译本书旨在利用 TensorFlow 针对各种现实场景设计深度学习系统,引导读者实现有趣的深度学习项目。本书涵盖 10 个实践项目,如用目标检测 API 标注图像、利用长短期记忆神经网络(LSTM)预测股票价格、构建和训练机器翻译模型、检测 Quora 数据集中的重复问题等。通过阅读本书,读者可以了解如何搭建深度学习的 TensorFlow 环境、如何构建卷积神经网络以有效地处理图像、如何利用长短期记忆神经网络预测股票价格,以及如何实现一个能够自己玩电子游戏的人工智能(AI)!本书适合数据科学家、机器学习和深度学习领域的从业者以及人工智能技术的爱好者阅读。
-
神经机器翻译菲利普·科恩(Philipp Koehn) 著,张家俊,赵阳,宗成庆 译本书介绍自然语言处理的一个应用—机器翻译及相关知识。全书分为三部分。第一部分包含第1~4章,简要介绍机器翻译中的问题、机器翻译技术的实际应用及历史,讨论一直困扰机器翻译领域的译文质量评价问题。第二部分包含第5~9章,解释神经网络、基本机器翻译模型的设计,以及训练和解码的核心算法。第三部分包含第10~17章,既涵盖构建新模型的关键内容,也涉及开放性的挑战问题和一些未解决问题的前沿研究。本书主要面向学习自然语言处理或机器翻译相关课程的本科生和研究生,以及相关研究领域的研究人员。
-
逃离绑架张为志宇宙万象,时时刻刻,变幻莫测。 物理世界、生物世界、精神世界的不断变化,引发了世间万物关系与结构的重大变化,这是一个物理世界、生物世界、精神世界大集成的时代。 多主体双脑社会结构,是智能世界个体选择性与集体分层演化发展的必然历史结果。 双脑世界对人机共生秩序的思考,最终体现或落实在了对社会大脑控制下的物理世界、生物世界、精神世界大集成的全新共同体生态体系构建的探索上。 这是一种非现场经济意识,是一个跨越人脑的类心智探索意识,一种人机共生社会的“多元多级一元论”哲学意识,一次高新智能时代东西方哲学融合再发展的讨论意识。 生活在“双脑世界”的人们,将不断地建立起更为进步的共性标准,并提升这个共识。
-
机器学习微积分一本通洪锦魁这是一本具有高中数学知识就能读懂的机器学习图书,书中通过大量程序实例,将复杂的公式重新拆解,详细、清晰地解读了机器学习中常用的微积分知识,一步步带领读者进入机器学习的领域。
-
Python深度强化学习入门(日)伊藤多一,今津义充,须藤广大,仁平将人,川崎悠介 等《Python深度强化学习入门:强化学习和深度学习的搜索与控制》共7章。第1章介绍了机器学习的分类、强化学习的学习机制以及深度强化学习的概念;第2章通过强化学习的基本概念、马尔可夫决策过程和贝尔曼方程、贝尔曼方程的求解方法、无模型控制等介绍了强化学习的基本算法;第3章通过深度学习、卷积神经网络(CNN)、循环神经网络(RNN)介绍了强化学习中深度学习的特征提取方法;第4章通过行动价值函数的网络表示、策略函数的网络表示介绍了深度强化学习的实现;第5章通过策略梯度法的连续控制、学习算法和策略模型等,详细介绍了深度强化学习在连续控制问题中的应用及具体实现;第6章通过巡回推销员问题和魔方问题详细介绍了深度强化学习在组合优化中的应用及具体实现;第7章通过SeqGAN的文本生成和神经网络架构的搜索详细介绍了深度强化学习在时间序列数据生成的应用。在附录中还给出了Colaboratory和Docker等深度强化学习开发环境的构建。
-
Python深度学习入门(日)木村优志《Python深度学习入门:从基础知识到实践应用》全面细致地讲解了深度学习的基础知识及其应用,具体内容包括深度学习开发环境的准备、Python的基础知识,以及深度学习模型的使用与开发等。《Python深度学习入门:从基础知识到实践应用》中充分结合了实例,对深度学习的概念、模型和程序语句进行了深入浅出的介绍,尤其是重点介绍了使用迁移学习的“NyanCheck”应用程序如何识别图像的种类,全面剖析了深度学习在实际中的应用。《Python深度学习入门:从基础知识到实践应用》适合人工智能、机器学习和深度学习方向的学生和技术人员学习,也适合广大人工智能爱好者阅读。通过《Python深度学习入门:从基础知识到实践应用》你将学习以下内容:Python的基础知识使用迁移学习的应用程序,及如何将其配置到GCP深度学习的基础和实际编程技术使用迁移学习的NyanCheck应用程序及其在GoogleCloudPlatform上的配置方法《Python深度学习入门:从基础知识到实践应用》特点:简单易懂,没有Python的基本知识,按照《Python深度学习入门:从基础知识到实践应用》章节也可实现深度学习快速入门数学公式少,并且以一种易于理解的方式进行解释实操演练,使用深度学习模型开发Web应用程序
-
智能推荐技术潘微科,林晶,明仲《智能推荐技术(大数据与人工智能技术丛书)》围绕电商、资讯等众多实际应用背后的内核,即智能推荐技术,系统介绍经典和前沿技术,包括基于邻域、矩阵分解、深度学习、迁移学习、联邦学习等的建模方法和推荐算法。《智能推荐技术(大数据与人工智能技术丛书)》围绕用户行为数据的建模问题组织内容,全书共分6部分: 第1部分(第1章)为背景和基础; 第2部分(第2~4章)为单行为推荐,是指仅对一种显式反馈(如评分)或一种隐式反馈(如浏览)数据进行建模; 第3部分(第5~6章)为多行为推荐,是指同时考虑浏览和购买等包含多种行为的数据; 第4部分(第7~8章)为序列推荐,是指同时关注用户行为和这些行为的先后顺序; 第5部分(第9~10章)为联邦推荐,更加关注用户行为中的隐私和数据安全问题; 第6部分(第11章)为总结与展望。全书综合梳理了多个智能推荐问题和相关技术,分析了方法的优缺点和内在联系,并在每章结束时提供了详细的参考文献和有针对性的习题。《智能推荐技术(大数据与人工智能技术丛书)》可以作为计算机科学与技术、软件工程等相关专业的研究生和高年级本科生的教材,也可以作为推荐系统工程师的参考手册。
-
深度学习原理与PyTorch实战集智俱乐部本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。第2版基于PyTorch 1.6.0,对全书代码进行了全面更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。