人工智能
-
人工智能导论朱强,飞桨教材本教材以案例与实践为重心,按照如下逻辑进行知识点的组织:第1章介绍人工智能发展历程和百度飞桨框架;第2章和第3章围绕机器学习展开,介绍了监督学习和无监督学习的各种经典算法及其应用案例;第4章围绕深度学习展开,介绍了前馈神经网络、卷积神经网络、循环神经网络和生成对抗网络学习四个核心知识点,及深度学习在计算机视觉、自然语言处理两大领域的应用和实践;第5章围绕强化学习的理论、方法和应用进行了介绍。 本书可面向高等院校(尤其是应用型本科)教学,教师可根据课程计划和专业特色选择授课内容(32~56学时);本书也可配套《人工智能导论:模型与算法》一书,作为人工智能专业课程的辅助学习材料;本书也适用于从事人工智能相关开发和应用的行业人员,快速掌握人工智能知识体系及提升代码实践能力。
-
人工智能核心技术解析及发展研究曾照华,白富强人工智能是当前 前沿和热门的技术领域,其发展已经远远 其 初所处的计算机学科范畴,正在影响着人类社会、经济、文化发展的方向和进程,也必将对人类未来产生重大影响。在此背景下,研究人工智能的核心技术是 必要的。本书主要对人工智能的核心技术和未来发展进行探究,内容包括机器学习、语音处理、自然语言处理、人机交互技术、计算机视觉、生物特征识别、知识图谱、人工智能的未来。本书层次分明、图文并茂,注重知识格局和内容体系的科学性与实用性,适用于对人工智能相关领域感兴趣的读者阅读和参考。
-
人工智能在医疗中的发展与应用王强,周正诚,黄春秀本书对人工智能在医疗领域中的应用进行了详细阐述,包括人工智能的理论、人工智能与医疗辅助技术、人工智能与医院信息系统整合,以及人工智能与未来医疗等内容,以期促进人工智能与医疗深度融合,拓宽我国医疗健康产业发展新视野。
-
Scikit-Learn、Keras和TensorFlow的机器学习实用指南奥雷利安·吉翁通过一系列最新的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、最小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。在更新的第3版中,作者Aurélien Géron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。
-
人工智能入门实践肖波,梁孔明人工智能技术发展和行业应用已成为当前人们关注的热点之一,人工智能第三次浪潮加速了全球生产生活方式的转变和行业变革,催生了诸如智慧城市、智慧农业、智慧医疗、智慧教育、智慧工厂、智能交通、智力游戏等新兴行业的蓬勃发展。本书面向人工智能相关领域的初学者,系统介绍人工智能领域当前流行的相关工具包和深度学习框架,使读者在简单了解人工智能技术的基础上,就可以借助软件工具包自行动手编写代码,解决基本的模式识别问题, 并通过不断拓展,由点到面,由易到难,逐步学会分析和解决实际行业问题,为踏入人工智能领域打好基础。本书首先讲授Numpy、Pandas、Matplotlib等人工智能工具包的特点和使用方法,使读者系统掌握对各种数据的生成、载入、处理和展示等操作,然后在此基础上系统介绍机器学习工具包Sklearn的特点和使用方法,最后重点介绍Pytorch等深度学习框架的使用方法,以及在计算机视觉、自然语言处理以及语音处理中的应用。本书可以作为人工智能相关专业研究生、本科生、高职生的入门实验教学教材,还可为对人工智能技术有兴趣的初学者提供一个学习和实践的参考材料,也可供相关领域的工程技术人员参阅。
-
嵌入式人工智能杨峰暂缺简介...
-
深度强化学习理论与实践龙强,章胜本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍了强化学习的模型,第5章简单介绍了深度学习和PyTorch编程框架。 本书可以作为理工科大学相关专业研究生的学位课教材,也可以作为人工智能、机器学习相关专业高年级本科生的选修课教材,还可以作为相关领域学术研究人员、教师和工程技术人员的参考资料。
-
PyTorch高级机器学习实战 ChatGPT背后的逻辑王宇龙本书讲解了经典的高级机器学习算法原理与知识,包括常见的监督学习、无监督学习、概率图模型、核方法、深度神经网络,以及强化学习等内容,同时更强调动手实践。所有算法均利用PyTorch计算框架进行实现,并且在各章节配备实战环节,内容涵盖点击率预估、异常检测、概率图模型变分推断、高斯过程超参数优化、深度强化学习智能体训练等内容。 本书附赠所有案例的源代码及各类学习资料来源,适合具有一定编程基础的人工智能爱好者学习,也是相关从业者和研究人员的学习指南。
-
Python深度学习吴茂贵,郁明敏,杨本法,李涛这是一本能指导读者快速掌握PyTorch和深度学习的著作,从PyTorch的原理到应用,从深度学习到强化学习,本书提供了全栈解决方案。第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为PyTorch领域的标准著作。第2版在第1版的基础上,去芜存菁,与时具进,根据PyTorch新版本全面升级,技术性、实战性、针对性、丰富性、易读性均得到了进一步提升,必定能帮助读者更轻松、更高效地进入深度学习的世界。全书一共19章,在结构上分为三大部分:第1部分(第1~4章) PyTorch基础首先有针对性地讲解了Python和PyTorch的基石NumPy中的关键知识,然后详细讲解了PyTorch的基础知识、神经网络工具箱和数据处理工具箱等内容,帮助读者快速了解和掌握PyTorch。第二部分(第5~10章) 深度学习基础依次讲解了机器学习、视觉处理、自然语言处理、注意力机制、目标检测、语义分割、生成式深度学习等机器学习和深度学习的核心技术的原理和使用。第三部分(第11~17章) 深度学习实践通过实战案例的方式,详细讲解了PyTorch在人脸检测和识别、迁移学习、中英文互译、图像分类、语义分割、生成式网络、对抗攻击等领域的应用和解决方案。第四部分(第18-19章) 强化学习重点介绍了强化学习和深度强化学习的基础理论、常用算法及相关实例。更为重要的是,为了让本书通俗易懂,在内容安排和写作方式上也颇花了一番心思。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。
-
动手学深度学习(美)阿斯顿·张(Aston Zhang),李沐(Mu Li)等著本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络——多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描述的线性代数、微分和概率等基础知识。