数学
-
静电加速器[瑞]朗纳·海尔伯格(Ragnar,Hellborg),[美]哈里·J.惠特洛(Harry,J.Whitlow)《静电加速器:一个多功能工具(英文)》是一部应用物理学的英文专著,中文书名可译为《静电加速器:一个多功能工具》。作者有两位,一位为朗纳·海尔伯格,瑞典隆德大学物理系应用物理学的名誉全职教授,他在应用物理学领域使用静电加速器工作了50多年,另一位是哈里·J.惠特洛,美国物理学家。他是美国拉斐特路易斯安那大学物理学教授兼路易斯安那加速器中心主任。《静电加速器:一个多功能工具(英文)》的目标是收集静电加速器领域的基础科学信息和技术信息,使其成为加速器工程师以及从事静电加速器研究的学生和研究人员的指南、参考手册和教科书。
-
非线性算子不动点问题的迭代算法及其应用何振华,李蓉《非线性算子不动点问题的迭代算法及其应用》研究了非线性算子不动点问题迭代逼近的收敛算法。这些算法包括相同空间下的一些非线性算子不动点问题的迭代序列,也包括不同空间下一些非线性算子不动点分裂问题的迭代序列,并在合适的条件下验证了这些算法具有强收敛或者弱收敛性。《非线性算子不动点问题的迭代算法及其应用》给出了许多非常初等的例子,并通过这些例子说明一些非线性算子的关系、有界线性算子范数的计算等,使得更容易理解这些抽象的非线性算子概念及其不动点迭代算法。
-
迭代分析基础何松年,张翠杰本书以非线性算子不动点为出发点导出非线性问题解的迭代算法,着重介绍如下三类非线性问题的迭代算法及其收敛性分析:①非线性算子不动点迭代算法,包括与非线性算子不动点理论和算法密切相关的泛函分析的基本知识,非扩张映像不动点的Halpern迭代、粘滞迭代、Mann迭代以及Ishikawa迭代等迭代算法。②单调变分不等式解的迭代算法,包括变分不等式解的存在性、**性理论,Lipschitz连续单调变分不等式解的外梯度算法、次梯度外梯度算法以及松弛投影方法等。③凸优化问题解的迭代算法,包括凸分析基本知识、二次规划问题、小二乘问题、凸可行问题、分裂可行问题解的迭代算法,大型线性方程组随机Kaczmarz算法,一般凸优化问题的邻近梯度算法等。本书既介绍了一些经典的结果,也介绍了新近出现的新成果,其中包含了作者的一些新结果。
-
内诣零流形映射的尼尔森数的阿诺索夫关系[比] 布拉姆·大·罗克 著本书分为三个部分,第一部分内容验证了内谐零流形M的(连续)自映射f:M→M的阿诺索夫关系,回顾了内诣零流形的主要性质和定义,还展示了内诣零流形与可解流形是不同的;第二部分内容给出了有两种可能的方式去推广阿诺索夫定理,第一种方式是寻找流形类,而不是诣零流形,这就使该关系对已知流形的所有连续映射都成立;第三部分内容集中讨论了低维内诣流形,也就是4维内诣流形,几乎为每个比伯巴赫群提供了特殊比伯巴赫群(或内诣零流形)的阿诺索夫关系的证明或反例。
-
等几何边界元法董春迎,公颜鹏,孙芳玲《等几何边界元法》是作者近年来在等几何边界元法领域取得的主要成果的部分总结。《等几何边界元法》分为11章。第1章是绪论,其对等几何边界元法进行了简单的介绍。第2章简要介绍了等几何分析的基础知识。第3和4章分别介绍了位势问题和非均质热传导问题的等几何边界元法。第5和6章分别介绍了非均质弹性问题和涂层薄体结构的等几何边界元法。第7章介绍了裂纹问题的等几何边界元法。第8、9和10章分别介绍了弹性动力学问题、液体夹杂复合材料和声学问题的等几何边界元法。第11章介绍了等几何边界元的快速直接算法。
-
对角线与同位的连体数独龚善涯数独自诞生以来迅速风靡世界,是因为它既能跨越文化传播,又健智益脑,趣味无穷。本套书针对目前数独的现状,开发了连体数独、立体数独、线型数独及混合运算数独四种类型的数独题。连体数独需要读者对二个变形数独具有良好的协同能力。立体数独突破了平面数独的范畴,要求读者具备良好的空间慨念和三维思维能力。线型数独是通过变化多端的线段组成的图型对数字在排列中进行特定的约束,使数独有更高的关联性和更强的逻辑性。线型数独内容丰富,要求读者具有很强的适应能力与归纳能力。混合运算数独,因它在运算中的不确定性,要求读者具有灵活的思维能力和精确持久的运算能力。本套书为读者提供了一个全新的数独平台,通过做题,读者在空间概念,逻辑思维,运算能力及处理复杂的数独问题方面能全方位得到快速提高。
-
从阿基米德三角形谈起苏化明阿基米德定理是一个古老且著名的数学问题。本书将这个涉及抛物线弓形与阿基米德三角形之间的面积关系问题类比到双曲线、椭圆、幂函数等曲线,得到了相应的关于这些曲线的几何不等式,本书还将抛物线中的阿基米德三角形三边之间的斜率关系类比到某些初等函数曲线,也得到了相应的不等式。本书可供大中师生及数学爱好者参考阅读。
-
一种基于混沌的非线性最优化问题[埃],M.A.艾尔一萨尔巴吉本书展示了一种新的混合优化方法来解决最重要的**化问题之一——非线性**化问题。本书共包含六章内容,第一章提出了**化问题的数学模型;第二章致力于介绍遗传算法的工作原理,并解释了遗传算法是如何应用到解**化问题之中的;第三章提出了解非线性**化问题的一个新算法;第四章提出了作业安排调度问题的结构,引入了作业安排调度问题的公式化;第五章的目的是实施解作业安排调度问题的新方法,并解释了它的细节;第六章为结论以及给未来研究者的几点建议。
-
问题解决与数学学习邓佳欣 田满红本书以人力资源社会保障部印发的《技工院校数学课程标准(2016)》为依据,根据技工院校的教学特点,在充分调研和吸收一线教师意见的基础上编写而成,供教师在教学中参考。本书内容面向应用型、技术技能型人才培养,注重学生职业技能、职业素养和数学学科核心素养的提升。为满足不同年级和不同专业类别教学的需要,本书分为两个部分:第一至第七章为中级工部分,第八至第十六章为高级工部分,每一章分别对应生物制药专业、数控专业、机电专业、汽车商务专业、电气专业等,定向为专业学习和岗位工作服务。“在工作中学习、在学习中工作”是技工教育需秉持的理念。推进工学一体化,就是着力实现从知识灌输向能力培养转变、从课堂教学向生产教学转变、从书本教学向实践教学转变。本书通过设置个性化、多样化的实践栏目,促使学生综合运用数学知识技能处理专业、生活和未来工作中的问题,提高判断能力和解决实际问题的能力。同时,每个知识点都有思想政治元素的融入,促使学生养成实事求是、积极进取的精神,展现“大国工匠”的风采。此外,本书每个章节均有对应的知识点、教学建议和学习背景,帮助教师更加直观地把握教学重点。
-
扭曲、平铺与镶嵌[美]罗伯特.J.朗《扭曲、平铺与镶嵌:几何折纸中的数学方法(英文)》就是这样一部由一位美国数学家和物理学家所著的英文版的用数学研究折纸艺术的学术著作,中文书名或可译为《扭曲、平铺与镶嵌:几何折纸中的数学方法》。该书的作者为罗伯特·J.朗,美国人,全职折纸艺术家和顾问。五十多年来罗伯特·J.朗一直是折纸的狂热爱好者,现在被公认为领先的折纸艺术大师之一。他以细节和现实主义的设计著称,他的作品包括一些有史以来复杂的折纸设计,将西方数学折纸设计学派的各个方面与东方对线条和形式的强调相结合,产生了独特、优雅且很难折叠的设计,他的作品曾在纽约(现代艺术博物馆)、巴黎(罗浮宫卡鲁塞尔厅)、塞勒姆(皮博迪·埃塞克斯博物馆)、圣地亚哥(世界民俗艺术博物馆)和日本加贺(日本折纸博物馆)的展览中展出。他是计算折纸技术的先驱之一,并发表了大量有关折纸理论和数学之间关系的文章。朗博士出生在俄亥俄州,在佐治亚州的亚特兰大长大,目前为全职折纸艺术家和顾问,他曾在担任物理学家、工程师和研发经理期间,单独撰写或与人合著了80多种科技出版物,并获得了50项关于半导体激光器、光学和集成光电子的专利。2007-2010年,他被选为美国光学学会(Optical Society of America)的会员,并担任《IEEE量子电子学》杂志的主编,在将主要关注点转向折纸之后,他单独撰写或与人合著了许多关于折叠数学和技术应用中折叠设计技术的文章。2009年,由于他的折纸作品,他获得了加利福尼亚理工学院的杰出校友奖,2013年他被选为美国数学学会成员。