数学
-
内诣零流形映射的尼尔森数的阿诺索夫关系[比] 布拉姆·大·罗克 著本书分为三个部分,第一部分内容验证了内谐零流形M的(连续)自映射f:M→M的阿诺索夫关系,回顾了内诣零流形的主要性质和定义,还展示了内诣零流形与可解流形是不同的;第二部分内容给出了有两种可能的方式去推广阿诺索夫定理,第一种方式是寻找流形类,而不是诣零流形,这就使该关系对已知流形的所有连续映射都成立;第三部分内容集中讨论了低维内诣流形,也就是4维内诣流形,几乎为每个比伯巴赫群提供了特殊比伯巴赫群(或内诣零流形)的阿诺索夫关系的证明或反例。 -
数学模型选谈华罗庚,王元 著从力学、物理学、天文学,直到化学、生物学、经济学与工程技术,无不用到数学……但提起数学,不少人仍觉得头痛,难以入门,甚至望而生畏。我以为要克服这个鸿沟还是有可能的……如果知道讨论对象的具体背景,则有可能掌握其实质……若停留在初等数学水平上,哪怕做了很多难题,似亦不会有助于对近代数学的了解。这就促使我们设想出一套“走向数学”小丛书,其中每本小册子尽量用深入浅出的语言来讲述数学的某一问题或方面,使工程技术人员、非数学专业的大学生,甚至具有中学数学水平的人,亦能懂得书中全部或部分含义与内容。这对提高我国人民的数学修养与水平,可能会起些作用。 -
对称群的表示论[法]皮埃尔-洛伊克·梅利奥特《对称群的表示论(英文)》包含了,对称群与对称函数、赫克代数及其表示、划分的可观测、随机杨氏图的模型等四部分,其中包含了,有限群的表示与半单代数、对称函数与弗罗比尼乌斯-舒尔同构、划分与表的组合、赫克代数与布饶尔-嘉当(Brauer-cartan)定理、赫克代数的特征与对偶、q-0时的赫克代数特殊化的表示、可观测的伊万诺夫-克罗夫代数、朱西-墨菲元素、对称群与自由概率、斯坦利-费雷公式与克罗夫多项式、无限对称群的表示、中心测度的渐近数、普朗谢雷尔测度和舒尔-外尔测度的渐近等内容。 -
从阿基米德三角形谈起苏化明阿基米德定理是一个古老且著名的数学问题。本书将这个涉及抛物线弓形与阿基米德三角形之间的面积关系问题类比到双曲线、椭圆、幂函数等曲线,得到了相应的关于这些曲线的几何不等式,本书还将抛物线中的阿基米德三角形三边之间的斜率关系类比到某些初等函数曲线,也得到了相应的不等式。本书可供大中师生及数学爱好者参考阅读。 -
Gauss,Euler,Lagrange和Legendre的遗产冯贝叶本书的主题是讨论什么样的整数n可以表示成两个、三个或四个整数的平方和.如果n可以做这样的表示,又如何将n具体表示成所说的形式以及这种表示方法的数目是多少.这是一个吸引 了几代数学家的问题,而这个问题 的推广和类比占据了今天的数论的中心地位.本书共9章,包括:问题的陈述和历史简述,把正整数表示成两个整数的平方和,把正整数表示成四个整数的平方和,二次形,把正整数表示成三个整数的平方和,Gauss的遗产,Liouville方法,三平和定理的数的几何证法,超几何级数与椭圆模函数方法. 本书适合数学爱好者和相关专业学生参考阅读. -
入学准备一日一练邱琴 编本书是为5—7岁即将入小学的孩子量身打造的数学入学准备类学习书。突出知识点介绍和游戏训练的有机结合,旨在利用“一日一练”的形式,让孩子在轻松自在的环境中培养良好的学习习惯,为小学入学打好坚实的基础,快快乐乐上小学。 -
扭曲、平铺与镶嵌[美]罗伯特.J.朗《扭曲、平铺与镶嵌:几何折纸中的数学方法(英文)》就是这样一部由一位美国数学家和物理学家所著的英文版的用数学研究折纸艺术的学术著作,中文书名或可译为《扭曲、平铺与镶嵌:几何折纸中的数学方法》。该书的作者为罗伯特·J.朗,美国人,全职折纸艺术家和顾问。五十多年来罗伯特·J.朗一直是折纸的狂热爱好者,现在被公认为领先的折纸艺术大师之一。他以细节和现实主义的设计著称,他的作品包括一些有史以来复杂的折纸设计,将西方数学折纸设计学派的各个方面与东方对线条和形式的强调相结合,产生了独特、优雅且很难折叠的设计,他的作品曾在纽约(现代艺术博物馆)、巴黎(罗浮宫卡鲁塞尔厅)、塞勒姆(皮博迪·埃塞克斯博物馆)、圣地亚哥(世界民俗艺术博物馆)和日本加贺(日本折纸博物馆)的展览中展出。他是计算折纸技术的先驱之一,并发表了大量有关折纸理论和数学之间关系的文章。朗博士出生在俄亥俄州,在佐治亚州的亚特兰大长大,目前为全职折纸艺术家和顾问,他曾在担任物理学家、工程师和研发经理期间,单独撰写或与人合著了80多种科技出版物,并获得了50项关于半导体激光器、光学和集成光电子的专利。2007-2010年,他被选为美国光学学会(Optical Society of America)的会员,并担任《IEEE量子电子学》杂志的主编,在将主要关注点转向折纸之后,他单独撰写或与人合著了许多关于折叠数学和技术应用中折叠设计技术的文章。2009年,由于他的折纸作品,他获得了加利福尼亚理工学院的杰出校友奖,2013年他被选为美国数学学会成员。 -
故事背后的数学逻辑[美] 约翰·阿伦·保罗斯 著,史树中 等 译通常人们总把数字想象得抽象、确定、永恒、枯燥无味,而好的故事则充满生气、精细微妙、回味无穷,但不太严格。而本书指出,故事与数字之间并非如你想象的那么不同,它们之间有令人惊奇、引人入胜的联系。事实上,数学史上逻辑和概率等重要概念,都是从故事演变的直观想法中发展起来的,新近的突变理论和复杂性理论亦是如此。为此,作者在全书中穿插了许多具有一定层次、发人深省的笑话、寓言、宗教轶事及有趣的对话,来帮助读者理解这些出色的观点。 -
数学趣味刘薰宇 著本书是著名数学教育家刘薰宇写给中小学生的数学科普经典。本书中所收录的都是作者从日常生活中随处拾来的数学文章。贴近人们日常生活的枯燥、繁难、令人头痛的数学题材和算法经过作者巧妙地书写,都变成趣味丰富、令人爱读的文字了。 -
一致模王住登,苏勇,史雪荣 著《一致模》系统地梳理并总结国内外同行专家近年来在偏序集或格上的模糊联结词和聚合算子方面的研究成果。《一致模》共5章,主要包括:预备知识;偏序集或格上的三角模和三角余模以及它们诱导的模糊蕴涵和模糊余蕴涵的基本性质;单位闭区间上的一致模的分类及几类特殊一致模的特征;有界格上一致模的构造与表示,一致模诱导的模糊蕴涵和模糊余蕴涵的特征及关系;完备格上左(右)半一致模、模糊蕴涵和模糊余蕴涵的构造及关系。
