数学
-
p 进数冯克勤本书共分五章。第一章介绍有理数域的p进赋值,给出衡量有理数大小和距离的各种不同尺度。第二章讲述p进数域,这是有理数域对p进赋值的完备化域。介绍了在p进数域中解代数方程和多项式分解的“新奇”结果和p进分析的基本工具:亨泽尔引理和牛顿折线。第三章介绍用p进分析工具研究数论问题的一个精彩例子,即研究多元二次方程的有理数解的哈塞定理。第四章介绍p进数域上的各种连续函数:p进的指数函数、对数函数、zeta函数和gamma函数,以及它们的数论意义。最后一章介绍p进积分理论。 此外,书中讲述了p进分析的用途,主要在数论研究中所起的作用,指出了在物理等其他学科的应用前景。 -
齐次马尔科夫过程建模的矩阵方法[俄罗斯] 鲍里斯·泽连措夫 著《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善(俄文)》是一部俄文版的概率论专著,中文书名或可译为《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善》。该书作者为鲍里斯·泽连措夫,俄罗斯人,技术科学博士,西伯利亚国立电信与信息大学(新西伯利亚)高等数学教研室教授,主要研究方向为复杂概率系统的数学模拟。该书提出了离散时间和连续时间的马尔科夫过程模型,在其基础上,计算了瞬态和稳态下的状态子集和状态的概率、时间和频率特征,并提出了两种扩大状态的途径:利用子集的边界状态和基于子集之间的转移频率,该书可供解决复杂系统建模问题的工程师和设计师,以及相关专业的学生和科研人员使用。 -
实分析Barry SimonPoincaré 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第1部分致力于实分析。从一个角度来看,它将20世纪的微积分与极限积分(测度理论)和极限微分(分布理论)结合起来。另一方面,它展示了抽象空间的胜利:拓扑空间、Banach和Hilbert空间、测度空间、Riesz空间、Polish空间、局部凸空间、Fréchet空间、Schwartz空间和 L^(p )空间。最后是对大技巧的研究,包括Fourier级数和变换、对偶空间、Baire范畴、不动点定理、概率思想和Hausdorff维数。应用包括无处可微函数的构造、Brown运动、空间填充曲线、矩问题的解、Harr测度和势理论中的平衡测度。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。 -
多赋范空间和广义函数.理论及应用[白俄]尤里.武武尼基场《多赋范空间和广义函数.理论及应用(俄文)》是一部俄文原版的有关泛函分析和广义函数方面的数学专著,中文书名可译为《多赋范空间和广义函数.理论及应用(俄文)》。作者为尤里·武武尼基杨,他是白俄罗斯人,数学物理科学博士,在白俄罗斯格罗德诺市的格罗德诺国立大学基础和应用数学教研室担任教授。 -
平面几何[俄]沙雷金 著; 郑元禄 译本书共分四章,分别为基本的几何学事实与定理,计算题,精选的平面儿何的习题与定理,形形色色的习题,答案与解法,内容全面,讲解细致。本书适合数学爱好者阅读和收藏。 -
数学中的矛盾转换法徐利治 郑毓信《数学中的矛盾转换法》通过对各类例子的分析讲述,由浅入深地向读者介绍数学中的“关系映射反演方法”(简称RMI方法)。因为这种方法的食指就是“矛盾转换法”,也就是把较困难的问题转化为较易处理的问题以求得解决的方法,所以这是一种非常普遍的思想方法,其应用远不限于数学领域。 -
数学中的美学方法徐本顺 殷启正《数学中的美学方法》采用历史唯物论观点,阐述了数学美的概念的发展过程、数学美的分类和特征以及数学美的地位与作用,还讨论了数学审美教育等专题。这些题材对培养高水准的数学师资和具有创造才能的数学工作者,乃至广大读者,无疑是富有启发性和指导意义的。相信大家都能从这本读物中获得应有的启示和教益。 -
矩阵半张量积讲义 卷四程代展本书是《矩阵半张量积讲义》的第四卷。内容包括两个部分:①一般有限集合上的动态系统的建模与控制,主要介绍有限集(包括有限环与有限格)上的动态系统。②跨维数欧氏空间的拓扑结构、等价性与商空间、跨维数动态系统及跨维半群系统的建模与控制。矩阵半张量积为这两类系统的研究提供了有效的工具。本书所需要的预备知识仅为工科大学本科的数学知识,包括线性代数、微积分、常微分方程、初等概率论。相关的线性系统理论及点集拓扑、抽象代数、微分几何等的初步概念在卷一附录中已给出。不感兴趣的读者亦可略过相关部分,这些不会影响对本书基本内容的理解。 -
数学物理方程现代数值方法李剑,白云霄,赵昕本书主要内容包括偏微分方程基础知识、Sobolev空间基本知识、Galerkin方法、有限元方法及其误差估计、泊松问题的其他数值方法、不可压缩Navier-Stokes问题有限元应用、修正的特征有限元方法和随机不可压缩流问题全离散有限元方法。有些章末附有课后练习,是对书中重点内容的升华和延伸。本书既有经典数值方法和理论,又有计算方法的新进展;不仅有算法的描述,同时还有算法的实现,可以满足各种读者不同的需要。 -
环拓扑Victor M. Buchstaber本书聚焦于环拓扑这一全新数学领域,它作为等变拓扑、代数几何与辛几何、组合学和交换代数的边缘交叉学科于 20 世纪 90 年代末兴起,随后迅速发展成为一个非常活跃的领域,与其他数学领域有着许多密切联系,并持续吸引着来自不同领域的专家。环拓扑中的关键角色是矩-角(moment-angle)流形,它是一类以组合术语定义、具有环面作用的流形。矩-角流形的构造通过准环面(quasitoric)流形的概念与环簇的组合几何和代数几何相关联。人们在矩-角流形上发现了显著的几何结构,这使得辛几何、Lagrange 几何和非 K?hler 复几何的古典与现代领域产生重要关联。矩-角复形和多面体乘积的相关分类构造为同伦拓扑的许多基本构造提供了通用框架。多面体乘积的研究已经发展成为同伦理论的一个独立主题。而对环面作用的新视角也促进了复配边等代数拓扑经典领域的发展。本书包含许多未解决的问题,适合对将所有相关学科联系起来的新思想感兴趣的专家,以及准备进入这一优美的全新领域的研究生和年轻研究人员研读和学习。
