数学
-
扩散方程解的矩函数[俄] 塔季扬娜·别谢季娜,[俄] 弗拉基米尔·扎多罗日尼 著《扩散方程解的矩函数:变分法(俄语)》是一部俄文原版的数学专著,中文书名可译为《扩散方程解的矩函数:变分法》.《扩散方程解的矩函数:变分法(俄语)》的作者有两位,一位是塔季扬娜·别谢季娜,俄罗斯人,物理和数学科学副博士,沃罗涅日国立大学讲师;另一位是弗拉基米尔·扎多罗日尼,俄罗斯人,物理和数学科学博士,沃罗涅日国立大学教授, -
广义概率论发展前景[意]法比奥.库佐林本书就是这样一本英文数学专著,它是从国外原版引进的,中文书名或可译为《广义概率论发展前景:关于趣味数学与置信函数实际应用的一些原创观点》。本书作者为法比奥.库佐林,意大利数学家,现为牛津布鲁克斯大学人工智能和视觉部门的负责人、教授,他是置信函数数学理论方面的世界级专家。本书共分为四个部分,第一部分介绍了相关概念;第二部分阐述并讨论了作为数学对象的信任函数的几何和代数性质的新奇的理论结果,重点是对不确定性的透视的“几何方法”和证据冲突的代数解的阐释;第三部分展示了这些理论是如何从重要的计算机视觉问题中产生并发展起来的(如对象跟踪、数据关联和物体定位),而证据形式主义又可以为这些问题提供有趣的、新的解决方案;最后一部分初步研究了将全概率的概念推广到信任函数的相关内容。 -
热带几何导引Diane Maclagan,Bernd热带几何学是代数几何学的一个组合投影,为计算代数簇的不变量提供了新的多面体工具。它基于热带代数,其中两个数的和是它们的最小值、乘积是它们的和。这将多项式转化为分段线性函数,将其零点集转化为多面体复形。热带簇保留了其对应的经典簇的大量信息。热带几何学是21世纪以来发展迅速的一门年轻学科,在将自己确立为一个独立领域的同时,它与纯数学和应用数学的许多分支都有着深刻的联系。本书完整地提供了热带几何学的介绍,适合初学该理论的研究生使用。本书对基本定理和结构定理等主要结果进行了证明,用大量的例子和计算解释了主要概念。每一章最后都提出了一些问题,这些问题将帮助读者实践他们的热带几何学技能,并获取相关研究文献。 -
分析学教程 第1卷 一元实变量函数的微积分分析学介绍[英]尼尔斯·雅各布(Niels Jacob)微积分是迄今为止人类所发明的描述我们的宇宙的非常好的数学语言,没有之一,而本书就是关于这一语言的大学数学教程。《分析学教程.第1卷 一元实变量函数的微积分分析学介绍(英文)》为英文影印,中文书名或可译为《分析学教程·第1卷,一元实变量函数的微积分分析学介绍》。《分析学教程.第1卷 一元实变量函数的微积分分析学介绍(英文)》的作者有两位:一位是尼尔斯·雅各布(Niels Jacob),英国数学家,英国斯旺西大学教授;另一位是克里斯蒂安·P.埃文斯(Kristian P.Evans),也是英国数学家,英国斯旺西大学教授。我们目前生活的时代使许多大学生将互联网视为支持他们学习的主要来源,如果不是仅有来源的话,此外,许多出版商更喜欢将与各个部分直接相关的简短教科书作为数学教科书的好选择,因此,编写和出版多达6卷完整的分析学课程著作可能看起来有悖常理,甚至可能是唐吉诃德式的与现代性斗争的行为,然而,通过我们在教授本科生分析学时的观察,在过去几年中撰写这6卷的动机已经慢慢显现出来了。 -
Lie 型有限单群中的扩展性Terence Tao扩展图是理论计算机科学、几何群论、概率论和数论中的重要工具。而用于严格建立图的扩展性质的技术来自表示论、代数几何和算术组合学等数学的不同领域。围绕后一主题,本书着重讨论了 Lie 型有限群上的 Cayley 图的重要情形,发展了诸如 Kazhdan 性质 (T)、拟随机性、乘积估计、从子簇中逃逸以及 Balog-Szemerédi-Gowers 引理等工具,还给出了Bourgain、Gamburd 和 Sarnak 的仿射筛法的应用。本书内容在很大程度上是自封的,增加了关于扩展子、谱理论、Lie 理论和 Lang-Weil 界的一般理论的内容,并包含大量习题和其他可选材料。本书适合对图论、几何群论和算术组合学感兴趣的研究生和数学研究人员阅读参考。 -
高等复分析Barry SimonPoincaré 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第 2B 部分全面介绍了第 2A 部分未包括的若干复分析主题。这一部分介绍了共形度量理论(包括 Poincaré 度量、Ahlfors-Robinson 对 Picard 定理的证明和 Bell 对 Painlevé 光滑性定理的证明)、解析数论专题(包括 Jacobi 二平方与四平方定理、Dirichlet 素数级数定理、素数定理和分拆数的 Hardy-Littlewood 渐近)、Fuchs 微分方程理论、渐近方法(包括 Euler 方法、定常相、鞍点法和 WKB 方法)、单叶函数(包括 SLE 的介绍)和 Nevanlinna 理论。Fuchs 微分方程和渐近方法的章节可以看作关于特殊函数理论的简易课程。本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。 -
磁约束聚变等离子体物理[美] 郑林锦(Linjin Zheng) 著《磁约束聚变等离子体物理:理想MHD理论(英文)》是一部英文版的物理学专著,因其在研究中使用了大量的数学工具而被我们数学工作室所相中,通过版权公司的中介而购买到的版本,因为笔者有过多次在国外购买科技图书但因其价高而不得不忍痛割爱的购书体验,所以决定将其引进国内。《磁约束聚变等离子体物理:理想MHD理论(英文)》的中文书名或可译为《磁约束聚变等离子体物理:理想MHD理论》。《磁约束聚变等离子体物理:理想MHD理论(英文)》的作者为郑林锦(Linjin Zheng),他是可控热核聚变等离子体的理论物理学家。他在北京的中国科学院物理研究所获得博士学位,目前在德克萨斯大学奥斯汀分校核聚变研究所工作,他和同事们的主要贡献包括:回转动力学理论的重新制定、所谓的边缘局域模态的理论解释的发展、自由边界膨胀表示的发明、第二环面Alfven本征模和电流交换撕裂模的发现等。 -
极值Kahler度量引论Gábor Székelyhidi微分几何中的一个基本问题是在流形上寻找正则度量。最著名的例子是Riemann面的经典单值化定理。Calabi引入极值度量是为了在K?hler几何的框架中找到这一结果的高维推广。本书介绍了对极值K?hler度量的研究,特别是关于射影流形上极值度量的存在与代数几何意义下的基本流形的稳定性猜想。本书阐述了猜想在分析和代数两方面的一些基本思想;概述了许多必要的背景材料,如基本K?hler几何、矩映射和几何不变理论。除了极值度量的基本定义和性质之外,本书也对该理论的几个亮点在研究生可以理解的水平上进行了讨论:关于K?hler-Einstein度量存在性的丘成桐定理、田刚的Bergman核展开、Donaldson的Calabi能量下界以及爆破的常标量曲率K?hler度量的Arezzo-Pacard存在定理。 -
数学中的矛盾转换法徐利治 郑毓信《数学中的矛盾转换法》通过对各类例子的分析讲述,由浅入深地向读者介绍数学中的“关系映射反演方法”(简称RMI方法)。因为这种方法的食指就是“矛盾转换法”,也就是把较困难的问题转化为较易处理的问题以求得解决的方法,所以这是一种非常普遍的思想方法,其应用远不限于数学领域。 -
数学中的美学方法徐本顺 殷启正《数学中的美学方法》采用历史唯物论观点,阐述了数学美的概念的发展过程、数学美的分类和特征以及数学美的地位与作用,还讨论了数学审美教育等专题。这些题材对培养高水准的数学师资和具有创造才能的数学工作者,乃至广大读者,无疑是富有启发性和指导意义的。相信大家都能从这本读物中获得应有的启示和教益。
