数学
-
数学家的故事尹逊波本书用简洁的文字介绍了50位数学家的主要经历、学术成就、治学态度和治学方法。其中,包括29位中国的数学家和21位国外数学史上有代表性的数学家。本书挖掘的重点立足于以下两方面:对于国内数学家,在介绍其个人成长经历的同时,更重视介绍其突出成果及贡献,增强学生的爱国热情和民族自豪感。对于国外数学家,重点放在其个人成长中正能量的元素,突出其人生观、世界观及价值观中对学生有启示的方面。本书特色在于融入近几年课程思政、数学文化及新工科教学改革的相关成果,既有深度,又有广度和温度。本书是数学学习的补充读物,也是数学思政的参考书。既可以供大中小学学校师生参考,又可供广大数学爱好者阅读。 -
科学技术哲学探新·范畴篇肖峰技术、信息、人是当代哲学关注的对象,由此形成了技术哲学、信息哲学和人学几大繁盛的哲学分支,本书从这几大分支中的若干基本范畴出发,进行一种基于分析哲学的语义透视,从而将相关研究推进到新的深度,并形成一种关联性的研究视界:信息技术与人的发展,从而为哲学探新在信息技术时代开拓新的生长点。全书分为技术哲学篇、信息哲学篇、人力篇等三篇。本书横跨技术哲学、信息哲学和人学、又侧重从基本范畴的语义分析上进行专门研究的著作,从语义研究上拓展科技哲学的新疆界。 -
卷绕John Roe卷绕数是拓扑学中基本的不变量之一。它测量一个动点P绕一个不动点Q运动的次数,前提是P的运动路径不经过Q并且P的终位置和它的起始位置相同。这个简单的想法有着深远的应用。通过本书的学习,读者将了解以下内容:卷绕数如何帮助我们证明每个多项式方程都有一个根(代数基本定理),保证通过单个平面切割对空间中三个对象进行公平划分(火腿三明治定理),解释为什么每个简单的闭曲线都有内部和外部(Jordan 曲线定理),将微积分与曲率和向量场的奇点联系起来(Hopf指数定理),允许从无穷中减去无穷并得到一个有限的答案(Toeplitz算子),推广给出关于矩阵群拓扑的一个基本且美丽的洞见(Bott周期性定理)。本书适合对卷绕数的概念及其在分析、微分几何和拓扑等数学领域中的应用感兴趣的本科生和研究生阅读。本书涉及很多领域,但它以一种清晰而审慎的方式来表述,对于有所准备的大学生来说,这将是一本极好的读物。本书也是一项重要的研究,即一个直观的想法如何将人带入数学研究的深海。—John McCleary, Mathematical Reviews大学数学老师经常发现自己阅读了很多有关该主题的书。但即使对我们这些爱读书的人来说,当你读了大约十本线性代数书籍后(它们看起来都像是出自同一个模具),这个过程偶尔也会变得不那么吸引人了。因此,偶然发现一本真正独特的书是非常愉快的,它以一种特有的方式阐述了一个主题,并教给你一些以前不知道的东西。如果这本书在这方面还做得非常好,那就更好了,就像本书一样……Roe的写作风格简洁,但清晰而优雅;我读这本书的时候几乎能听到英国口音。这种清晰的写作风格和大量的附录使得本书更易于阅读。—MAA Online -
受控理论与初等不等式石焕南本书共分为7章,第1章和第2章介绍了受控理论的基本概念和主要定理,以及中国学者对受控理论的一些推广,第3章和第4章介绍了受控理论在对称函数不等式中的应用,第5章、第6章和第7章分别介绍了受控理论在数列不等式,二元均值不等式和几何不等式中的应用.本书适合中学生,数学教师及初等数学研究人员参考阅读. -
数学物理问题[俄]帕维尔·费多罗夫本书是一部版权引进自俄罗斯的俄文原版技术专业本科生教材,中文书名可译为《数学物理问题》。本书的作者是:帕威尔.费多罗夫,他是俄罗斯人,萨拉托夫国立技术大学应用数学教研室教授,主要研究方向为数学和刚体力学,从事教育行业35年。 -
二次型和 Clifford 群的算术和解析理论Goro Shimura在本书中,著名数学家、Steele 奖得主志村五郎以清晰易读的风格,介绍了一个全新的数学领域。书中主题包括 Witt 定理和二次型上的 Hasse 原理、Clifford 代数的代数理论、自旋群和自旋表示。作者还给出了一些在其他地方不容易找到的基本结果。本书的两个重要主题是:(1) 二次 Diophantus 方程,(2) 正交群和 Clifford 群上的 Euler 积和 Eisenstein 级数。个主题的起点是 Gauss 的结果:一个整数作为三个平方和的本原表示的个数本质上是本原二元二次型的类数。本书给出了这一结果在代数数域中任意二次型上的推广及其各种应用。对于第二个主题,作者证明了与 Clifford 群或正交群上的 Hecke 本征形式相关联的 Euler 积存在亚纯连续性。对于这样的群上的 Eisenstein 级数,结论也是如此。本书基本上是自封的,只需要读者熟悉代数数论的相关知识。对于一些标准的事实,作者在叙述时给出了附有详细证明的参考文献。 -
矩阵理论刘启明 编本书比较全面、系统地介绍了矩阵的理论、方法及其应用。全书分别介绍了线性空间与线性变换、欧氏空间与酉空间理论、向量与矩阵的范数理论及应用、矩阵分析与应用、矩阵的分解与特征值的估计、广义逆矩阵、特殊矩阵等内容。附录部分包括一元多项式理论、多元函数理论、基于MATLAB的矩阵运算。各章配有一定数量的习题。本书可作为工科院校高年级本科生和研究生的教材,也可作为相关专业的教师及工程技术人员的参考书。 -
无穷的玩艺 数学的探索与履行[匈]罗兹?佩特(Rózsa Péter) 著;朱梧槚 袁相碗 郑毓信 译《无穷的玩艺——数学的探索与旅行》是数学家路沙·彼得所写的数学普及读物,是一本引人入胜的名著。不同任何公式,着重讨论数学的思想方法。从原始的计数开始,到达数理逻辑这一现代数学分支为止。 -
钱敏数学文选 数学家钱敏精选文集北京大学数学科学学院钱敏先生1927年3月出生于江苏无锡。1944年至1946年就读于成都金陵大学,1946年至1949年就读于清华大学,1949年毕业后留校担任助教。1950年至1951年到北京大学学习,1951年至1952年任燕京大学助教,1952年入职北京大学,先后担任讲师、副教授、教授、博士生导师,1997年6月退休。2019年逝世。钱敏先生在教书育人方面倾注了大量心血,在科研方面探索不断,与人共同提出马氏过程的环流理论及熵产生的概率定义。2013年荣获中国数学会第十一届华罗庚数学奖。《钱敏数学文选》收录钱敏先生代表性的学术论文若干,选目见附件。 -
矩阵之美耿修瑞《矩阵之美·基础篇》从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
