数学
-
分析学教程 第2卷 多元函数的微分和积分 向量微积分[英]尼尔斯·雅各布(Niels Jacob)本书的目标是为学生和讲师提供易于理解的资料。本书是为大学二年级以上的学生设计的分析学课程的第二卷,本书包括多元函数的微分、多元函数的积分、矢量微积分三部分,本卷的目的是将一个实变量实值函数的分析扩展到从Rm到Rn的映射。 -
Lie 型有限单群中的扩展性Terence Tao扩展图是理论计算机科学、几何群论、概率论和数论中的重要工具。而用于严格建立图的扩展性质的技术来自表示论、代数几何和算术组合学等数学的不同领域。围绕后一主题,本书着重讨论了 Lie 型有限群上的 Cayley 图的重要情形,发展了诸如 Kazhdan 性质 (T)、拟随机性、乘积估计、从子簇中逃逸以及 Balog-Szemerédi-Gowers 引理等工具,还给出了Bourgain、Gamburd 和 Sarnak 的仿射筛法的应用。本书内容在很大程度上是自封的,增加了关于扩展子、谱理论、Lie 理论和 Lang-Weil 界的一般理论的内容,并包含大量习题和其他可选材料。本书适合对图论、几何群论和算术组合学感兴趣的研究生和数学研究人员阅读参考。 -
数学与经济史树中本书分12章论述了数学与经济学的关系,既有严肃的理论探讨,又有具体的实例分析。内容包括经济学中运用数学的历史,对可用数学研究的经济学和经济学研究中的数学的看法,数学在经济学中的均衡,计划和市场、竞争与互利等方面研究中的作用,以及对数学与经济学共同发展的展望等。 -
磁约束聚变等离子体物理[美] 郑林锦(Linjin Zheng) 著《磁约束聚变等离子体物理:理想MHD理论(英文)》是一部英文版的物理学专著,因其在研究中使用了大量的数学工具而被我们数学工作室所相中,通过版权公司的中介而购买到的版本,因为笔者有过多次在国外购买科技图书但因其价高而不得不忍痛割爱的购书体验,所以决定将其引进国内。《磁约束聚变等离子体物理:理想MHD理论(英文)》的中文书名或可译为《磁约束聚变等离子体物理:理想MHD理论》。《磁约束聚变等离子体物理:理想MHD理论(英文)》的作者为郑林锦(Linjin Zheng),他是可控热核聚变等离子体的理论物理学家。他在北京的中国科学院物理研究所获得博士学位,目前在德克萨斯大学奥斯汀分校核聚变研究所工作,他和同事们的主要贡献包括:回转动力学理论的重新制定、所谓的边缘局域模态的理论解释的发展、自由边界膨胀表示的发明、第二环面Alfven本征模和电流交换撕裂模的发现等。 -
数学与文化齐民友本书分3章探讨了数学与文化的关系。作者从数学和文化起源谈起,直至它们的演变和进化。用诸多的事例,说明数学对人类文化的影响,不仅显示在现代化科学技术方面,更重要的是它表现了一种理性主义的探索精神。 -
数学与教育丁石孙 张祖贵本书分6章论述了数学与教育的关系、数学的重要性、数学教育的重要性以及数学对于教育的特殊性,进而阐明了数学所具有的一系列文化教育功能——数学的自然科学教育功能、社会科学教育功能、人文科学教育功能与思维教育功能。 -
游戏和博彩中的数学Edward Packel本书介绍和发展了各种博彩和游戏活动的理性分析中需要的一些重要而美丽的基本数学知识。大多数标准的赌场游戏(轮盘赌、21点、基诺),一些社交游戏(西洋双陆棋、扑克、桥牌)和各种其他活动(国家彩票、赛马等)都是基于呈现它们的数学层面的方式进行处理的。数学的发展范围从可预测的概率概念、期望、二项式系数到一些不太知名的基本博弈论思想。第二版新增材料包括:体育博彩和背后的数学;博弈论在扑克唬人中的应用及其与得州扑克现象的关系;Nash均衡概念及其在大众文化中的出现;互联网连接到游戏和Java小程序,用于实践和课堂使用。读者需要的正规的数学背景是一些高中代数知识。为有兴趣处理和扩展书中讨论的思想的读者准备的游戏相关的习题放在大多数章节末尾。一些习题的答案放在本书的后。 -
Riemann曲面的模空间Benson Farb,Richard映射类群和Riemann曲面的模空间是2011年IAS/帕克城数学研究所研究生暑期班的主题。本书介绍了组成暑期学校的9个不同的讲座系列,涵盖了当前兴趣的精选主题。导论课程处理映射类群和Teichmüller理论。更高级的课程包括模空间的相交理论,多边形台球和模空间的动力学,映射类群的稳定上同调,Torelli群的结构和算术映射类群。该课程由该领域的专家提供的一系列密集的短讲座组成,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课程不重复。本书是对Riemann曲面的模空间的拓扑、几何和动力学以及相关主题感兴趣的研究生和研究人员的宝贵资源。 -
分析学教程 第1卷 一元实变量函数的微积分分析学介绍[英]尼尔斯·雅各布(Niels Jacob)微积分是迄今为止人类所发明的描述我们的宇宙的非常好的数学语言,没有之一,而本书就是关于这一语言的大学数学教程。《分析学教程.第1卷 一元实变量函数的微积分分析学介绍(英文)》为英文影印,中文书名或可译为《分析学教程·第1卷,一元实变量函数的微积分分析学介绍》。《分析学教程.第1卷 一元实变量函数的微积分分析学介绍(英文)》的作者有两位:一位是尼尔斯·雅各布(Niels Jacob),英国数学家,英国斯旺西大学教授;另一位是克里斯蒂安·P.埃文斯(Kristian P.Evans),也是英国数学家,英国斯旺西大学教授。我们目前生活的时代使许多大学生将互联网视为支持他们学习的主要来源,如果不是仅有来源的话,此外,许多出版商更喜欢将与各个部分直接相关的简短教科书作为数学教科书的好选择,因此,编写和出版多达6卷完整的分析学课程著作可能看起来有悖常理,甚至可能是唐吉诃德式的与现代性斗争的行为,然而,通过我们在教授本科生分析学时的观察,在过去几年中撰写这6卷的动机已经慢慢显现出来了。 -
高等复分析Barry SimonPoincaré 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第 2B 部分全面介绍了第 2A 部分未包括的若干复分析主题。这一部分介绍了共形度量理论(包括 Poincaré 度量、Ahlfors-Robinson 对 Picard 定理的证明和 Bell 对 Painlevé 光滑性定理的证明)、解析数论专题(包括 Jacobi 二平方与四平方定理、Dirichlet 素数级数定理、素数定理和分拆数的 Hardy-Littlewood 渐近)、Fuchs 微分方程理论、渐近方法(包括 Euler 方法、定常相、鞍点法和 WKB 方法)、单叶函数(包括 SLE 的介绍)和 Nevanlinna 理论。Fuchs 微分方程和渐近方法的章节可以看作关于特殊函数理论的简易课程。本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
