数学
-
创新设计思维原则 Principles of Innovative Design ThinkingWenjuan Li, Zhenghe本书提出了一种创新设计理论的综合体系,能够提升设计中所必需的创新思维和创造力。该理论构建了设计中各元素以及设计过程的模型和算法,能够帮助收集和量化概念设计阶段中可用的较为模糊的设计信息,通过推动创造性的思维和抽象性思考,促进设计的逻辑性和结构化的进程。该理论应用可拓学探索设计问题的重构和设计思维的发散,并应用公理化设计理论指导功能需求和设计参数的迭代分解,在此过程中促进创新思维和创新设计方案的产生。可拓学与公理化设计理论的协同作用,是跨专业、跨学科的协同研究和发展,同时融合了中国哲学中的抽象思维模式和西方理论中的迭代设计流程。 本书能够帮助学生以及工程、自然和社会科学、商业等多领域的从业人员建立解决设计问题的创造性和创新性的思维及方式。 -
导数压轴全技法郭伟本书主讲高中数学常考的十四大版块中的“导数”部分,系统地分析了高中数学各版块中的重点和难点内容,共归纳了26个导数压轴的经典题型与方法分析,每节内容由知识点、经典题型、方法分析、重点和难点思路分析以及拓展技巧结论组成.本书为高中学生提供了系统的高考数学复习方案以及解决经典题型、重点和难点问题的应对策略.本书还侧重于方法、技巧和题型的总结与归纳.本书适合高二、高三的学生学习使用,希望通过学习本书能帮助同学们更好地解答导数压轴题. -
化归与归纳 类比 联想史久一 朱梧槚化归,就是通过某种转化,将复杂的问题转化成某一类已解决或较容易的问题,是数学方法论中重要的思想之一。本书所有的数学知识都被限制在中学范围以内,能使一般读者以很高的视角去看待数学,并掌握化归这种在生活中十分重要的思维方式。 -
周期函数的近似方法和特性[乌克兰] 马伊奥尔·季曼 著《周期函数的近似方法和特性——特殊课程(俄文)》是一部俄文原版的数学专著,书名译成中文为《周期函数的近似方法和特性——特殊课程》,作者马伊奥尔·季曼,乌克兰人,物理和数学科学博士,教授,第聂伯罗彼得罗夫斯克国立大学高等数学教研室负责人。如何来介绍和评价该书呢?笔者只是一位早年曾经学过一点高等数学的数学编辑,并非饱学之士,更非鸿学大儒,所以只能谈一点自己在决定购买版权时的私人感受。初对该书感兴趣还是要从一道奥数试题谈起,这种写法完全是效仿大家的,比如华罗庚先生曾写过《从单位圆谈起》(当然还有几本小册子也是起名《从……谈起》)。已故的奥赛专家严镇军先生也写过《从正五边形谈起》。这是一道2005年国际数学奥林匹克印度队选拔考试题。 -
最优化方法张鹏本书介绍优化理论的基本概念和**化问题的基本求解方法,内容包括线性规划、整数规划、动态规划、图与网络算法、无约束优化、约束优化等。这些优化概念和方法从总体上可分为组合优化和连续优化两大类。本书的内容可看作是计算机类专业本科算法课程的延伸,尤其注重数学概念的应用和分析证明能力的训练。 -
椭圆曲线颜松远全书共分为八章.第一章介绍与椭圆曲线有关的不定方程的知识,第二章介绍椭圆曲线的历史起源,第三章介绍椭圆曲线的重要性质,第四章介绍与椭圆曲线理论有关的一个极为重要的猜想,即Birch和Swinnerton-Dyer猜想(简称为BSD猜想),第五章介绍椭圆曲线在证明费马大定理中的应用,第六章介绍椭圆曲线在质性判定中的应用,第七章介绍椭圆曲线在整数分解中的应用,第八章介绍椭圆曲线在现代公钥密码体制中的应用. -
高中数学各种题型解法大全赵南平本书根据已经实施的《普通高中数学课程标准》提出的6个核心素养精神编写而成,并在书中加入了作者对创新题型解法的研究,每节内容主要包括“解法指导""典型范例”"练习题""练习题解答”4个版块.书中的“解法指导"版块主要针对高考试卷中出现的各种题型进行了归纳、总结,收录的题型在“典型范例”版块中有对应的例题及解答,已基本涵盖所有题型,资料新且齐全.本书还包含了近几年各省高考数学试题中的精华,为准备高考的学生提供了翔实的参考资料.本书适合中学生、数学教师及数学爱好者参考使用. -
不焦虑的数学系列贼叉(本名:朱晓睿)这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读者养成良好的自学、自练习惯,实现数学学习的轻松愉悦与进步。无论是家长、学生还是老师,在读完这三本书之后,都会有更深入的认识和体悟,在教育和学习中取得更加显著的效果。因此,《不焦虑的数学》、《不焦虑的几何》和《不焦虑的函数》不仅是提高数学成绩、缓解数学焦虑的有效指南,更是提升数学水平、塑造人才的优质读物。 -
凸性史树中凸集主要介绍了凸的定义,凸集承托定理的解析证明,数理经济学上的应用及对一般情形的推广;凸函数一章主要介绍了凸函数的定义,凸性不等式,凸函数的导数性质,次微分和共轭函数,凸分析的两条基本定理凸规划等。 -
随机过程学习指导及习题解析王沁本书是与《随机过程》主教材配套使用的学习指导书,主要目的是进一步让非数学专业、工科背景的本科生、研究生轻松地学习和熟练掌握随机过程的基本概念、基本理论和基本方法,并运用随机过程知识来分析和解决实际问题。全书共六章,内容包括概率论基础、随机过程的基本概念、随机过程的均方微积分、泊松过程、平稳过程和马尔可夫过程。每章分为四部分,依次为内容提要、例题详解、习题指导、基于R语言的随机过程实验指导。本书可作为高等学校通信工程、电子信息工程和其他相关专业本科生的学习指导书,也可以作为报考硕士研究生的复习辅导书,还可作为有关教师的教学参考书。
