数学
-
数理逻辑和算法理论袁相碗本书以数理逻辑和算法理论的进化为主线,并结合计算机与人工智能学科的发展为其主要特色进行论述。本书共分8章,主要内容包括算法化和公理化矛盾统一的数学史观,逻辑的数学化,集合论公理化,数学基础问题三大派之争,数理逻辑主要内容的形成,丘奇-图灵论题的创立和计算机的出现,计算机科学与算法,人工智能与算法。其中后两章介绍了计算机科学、人工智能与算法的关系。本书适合作为高等院校人工智能、计算机科学、数学、哲学等本科专业学生及研究生对应课程的学习教材,也适合作为从事计算机科学和人工智能应用与开发的科技人员的参考用书。 -
偏微分方程的控制Jean-Michel Coron本书是一本英文专著,主题为偏微分方程的控制,内容由该领域的多位专家合作编写而成,既包含非常基础的内容,同时也包含了的研究进展。内容涉及:Carleman估计及其应用,饱和边界镇定性,随机微分方程的状态观测,耗散系统的渐近同步等,可供数学物理等相关专业的广大师生和科研人员使用参考。 本书主要源自中法应用数学国际联合实验室(LIASFMA)举办的应用数学研究生在线课程讲义。课程主讲人为来自法国和中国的四位国际知名专家,包括两位国际数学家大会邀请报告人。 -
变分分析与应用(美)鲍里斯 S. 莫尔杜霍维奇著;欧阳薇译《变分分析与应用》是BorisS.Mordukhovich教授在变分分析与非光滑优化领域的**专著。本书主要在有限维空间中对变分分析的关键概念和事实进行系统和易于理解的阐述,这部分内容包括一阶广义微分的基本结构、集合系统的极点原理、增广实值函数的变分原理、集值映射的适定性、上导数分析法则、集值算子的单调性和一阶次微分分析法则;同时进一步介绍基于上述理论的先进技术在不可微优化与双层优化、半无穷规划、集值优化与微观经济建模中的应用。有限维框架显著地简化了主要结果的说明和证明。本书包含丰富的说明性图表和例子,每章末尾都配有大量的练习题,以帮助读者加深对内容的理解,培养本领域的研究技能,为“变分分析”课程的教学创建可用的教材。 -
混合运算数独龚善涯数独自诞生以来,迅速风靡世界,是因为它既能跨越文化传播,又健智益脑,趣味无穷。本套书针对目前数独的现状,开发了连体数独、立体数独、线型数独及混合运算数独四个方面的书共6本。连体数独需要读者对二个变形数独具有良好的协同能力。立体数独突破了平面数独的范畴,要求读者具备良好的空间慨念和三维思维能力。线型数独是通过变化多端的线段组成的图型对数字在排列中进行特定的约束,使数独有更高的关联性和更强的逻辑性。线型数独内容丰富,要求读者具有很强的适应能力与归纳能力。混合运算数独,因它在运算中的不确定性,要求读者具有灵活的思维能力和精确持久的运算能力。本套书为读者提供了一个全新的数独平台,通过做题,读者在空间概念,逻辑思维,运算能力及处理复杂的数独问题方面能全方位得到快速提高。 -
亲爱的数学(英)戴维·达林,(英)阿格尼乔·班纳吉 著为什么蝉每隔17年才爬出地面?有没有一家旅馆的房间数量是无限的?怎样才能看到四维空间?如何破解一个棋局?π的小数有规律吗?在一对精通数学的师生眼中,每个奇妙的现象背后都可能蕴藏着美丽的数学原理,从这些悖论和谜题出发,谁都能够一步一步见证数学的魅力。而且他们相信,“如果你不能用日常语言解释一样东西,那你就是没有真正弄懂它”。这是一次充满惊奇的智力之旅。天才少年主攻数学知识,作家老师则负责让故事通俗易懂,他们运用了大量形象的比喻和轻松有趣的语言,旨在为读者提供非常友好的阅读体验。在这次旅程中,读者可以了解现代数学的前沿,偶尔有些挑战,常常感到有趣,并且总会收获惊奇。 -
对称问题[美]亚历山大·G.拉姆(Alexander,G.Ramm)《对称问题:纳维尔-斯托克斯问题》由哈尔滨工业大学刘培杰物理工作室从国外进引,由于之前18年我们一直在做数学工作室,考虑到数理不分家,且数学出版市场已呈饱和态势,且已有内卷化倾向产生,所以这是一次跨界之旅,本书中文书名可译为《对称问题:纳维尔一斯托克斯问题》。《对称问题:纳维尔-斯托克斯问题》的作者为:亚历山大·G.拉姆(AlexanderG.Ramm),他生于俄罗斯,1979年移民美国,现在是美国公民,他是数学教授,对分析、散射理论、反问题、理论物理、工程、信号估计、层析成像、理论数值分析和应用数学有广泛的兴趣,他著有690篇研究论文、16部专著并编辑了3本书,他在世界各地的许多大学做过演讲,并指导过11名博士生,他是以色列和乌克兰的富布赖特研究教授,墨西哥和埃及的杰出客座教授,墨卡托教授,第7届PACOM大会的发言人,他赢得了Khwarizmi国际奖,还获得了其他一些荣誉。《对称问题:纳维尔-斯托克斯问题》属流体力学范畴,对流体运动所遵循的运动规律,18,19世纪期间科学界有深入的研究,流体根据其物理性质分为粘性与无粘两类,什么是流体的粘性呢?流体虽然不承受切应力,只承受法应力,但对切向变形并不是没有抵抗的,这种抵抗就是内摩擦,流体的内摩擦称为粘性,流体在静止或匀速运动时无相对滑动,这时粘性表现不出来,无粘气体亦称理想气体,对无粘流体运动规律的精确数学描述有欧拉(Euler)方程;粘性流体运动规律的精确数学描述则有本书书名中所提到的纳维尔-斯托克斯(Navier-Stokes)方程,这两个方程是非常基本的,得到了非常广泛的应用。 -
特征值问题的下谱界与多网格离散张宇本书为学术著作。特征值问题是工程数学和理论物理学的中心问题之一。本书主要从特征值的下谱界和多网格离散两个重要角度探索和发展特征值问题的有限元求解,主要阐述了变系数二阶椭圆及Stokes算子的渐近下谱界、Steklov特征值问题的渐近下谱界、流体力学中特征值问题的可保证下谱界、重调和特征值问题Ciarlet-Raviart混合法的二网格离散、反散射中Steklov特征值问题的多网格校正、反散射中Steklov特征值问题的自适应算法等内容。本书将所得理论结果用于物理科学及应用工程等领域中的特征值问题,以对现有关于特征值问题下谱界及多网格离散理论作补充,在一定程度上可推动现有理论的发展和完善。 -
历届全国初中数学竞赛经典试题详解谢树发本书精选了历届全国、省、市初中数学竞赛优秀试题,试题数量超过了1000道,所选的每道题都有详细解答,提升了它的使用价值和权威性.书中的三段"小插曲",即"解题策略大盘点(一)(二)(三)",将初中数学常用的解题策略和技巧,通过对典型例题精辟的分析和详尽的讲解,系统地介绍给中学生读者,深入浅出,通俗易懂,同学们乐于接受也容易掌握,这是本书的一大特色.本书适合中学师生及数学爱好者参考阅读. -
线性代数与几何[俄]伊戈尔·R.沙法列维奇(Igor,R.Shafarevich),[法]阿列克谢·O.雷米佐夫(Alexey,O.Remizov) 著; 晏国将 译本书的第1章到第7章介绍了一般线性代数课程包含的内容,在此基础上还介绍了仿射空间、射影空间、外积与外代数、二次曲面、双曲几何,给出了群、环和模的基本概念,后还阐述了表示论的基础知识.本书是关于线性代数的讲义,对于一些重要的知识和需要仔细思考的细节,作者会不惜笔墨力图把问题讲清楚,这是本书与同类书籍相比的一大优点.本书作者是优秀的数学家与数学教育家,读者不仅能从本书中学到基础的数学知识,还能从中理解作者对代数学的感悟.本书适合于数学系专业的师生以及数学爱好者参考使用. -
迭代分析基础何松年,张翠杰本书以非线性算子不动点为出发点导出非线性问题解的迭代算法,着重介绍如下三类非线性问题的迭代算法及其收敛性分析:①非线性算子不动点迭代算法,包括与非线性算子不动点理论和算法密切相关的泛函分析的基本知识,非扩张映像不动点的Halpern迭代、粘滞迭代、Mann迭代以及Ishikawa迭代等迭代算法。②单调变分不等式解的迭代算法,包括变分不等式解的存在性、**性理论,Lipschitz连续单调变分不等式解的外梯度算法、次梯度外梯度算法以及松弛投影方法等。③凸优化问题解的迭代算法,包括凸分析基本知识、二次规划问题、小二乘问题、凸可行问题、分裂可行问题解的迭代算法,大型线性方程组随机Kaczmarz算法,一般凸优化问题的邻近梯度算法等。本书既介绍了一些经典的结果,也介绍了新近出现的新成果,其中包含了作者的一些新结果。
