数学
-
一个数学家的辩白(英)G.H.哈代 著;李文林 戴宗铎 高嵘 编译《一个数学家的辩白》(A Mathematician's Apology)可以说是哈代本人的自传。哈代从自己的角度,谈论了数学中的美学,给了门外汉一个机会以洞察工作中的数学家的内心。虽然这么说,哈代在本书中阐述的观点却只是个人的,他的观点也许不被所有的数学家共同拥有。 -
数学领域中的发明心理学[法]阿达玛(Hadamard.J.)著;陈植荫 肖奚安 译本书介绍了关于数学心理学的一般考察、关于无意识的讨论、无意识和发现的关系、准备阶段的逻辑和机遇、最后阶段的有意识工作、不同类型的数学心理、直觉中的不解之谜、对数学研究的一般性指导等。 -
我是怎么成为数学家的(俄罗斯) 柯尔莫戈洛夫 著;姚芳,刘岩瑜,吴帆 编译柯尔莫戈洛夫喜欢数学,研究数学,培养数学人才,对数学和数学教育的发展做出了重大贡献。本书介绍了柯尔莫戈洛夫在数学学习和数学研究方面的心路历程和成长经历,对数学人才的培养过程,并首次将柯尔莫戈洛夫写给中学生的经典通俗数学读物介绍给中国读者。本书的最后,是数学家阿尔诺德(柯尔莫戈洛夫的学生)对柯尔莫戈洛夫的回忆文章。 -
数字经济统计与核算研究彭刚,朱莉 编把握新-轮数字科技革命和产业变革新机遇,坚定发展数字经济,事关国家发展大局。《数字经济统计与核算研究》围绕数字经济若干统计与核算问题展开了深入研究。全书内容分为两个层面:一是在理论和方法层面,对数字经济生产核算、分享经济增加值核算、数据资产价值核算和人工智能核算等前沿问题进行了探索性研究;二是在应用层面,对中国数字经济总量进行实际测算,并实证探究了由数字技术支撑的数字经济、人工智能等新经济活动对高质量发展、城乡要素配置、碳排放以及对外贸易及全球价值链分工地位的影响。《数字经济统计与核算研究》对科学认识数字经济、理解数字经济及相关新兴经济的内在机理、促进数字经济统计核算研究和实践发展具有一定的参考价值。 -
数字经济杨虎涛数据作为一种新的生产要素,正与资本、劳动等要素相结合,以前所未有的广度和深度重构生产和生活方式。然而,数字经济在生活性服务业中的过度倾斜,虽然使智能化生产和智能化流通发生了根本性变化,但仅仅缩短了生产到消费的距离,尚未给生产带来颠覆性革新。因此,必须以制造业为底座,推动数字经济与实体经济深度融合,将数据规模优势转化为数据胜势,巩固壮大实体经济根基。这既是历次技术革命浪潮带给我们的启示,也是新发展格局下实现经济高质量发展的要求。 -
一个应用数学家的辩白[美]劳埃德·尼克·特雷费森(Lloyd Nick Trefethen)本书是数值分析家劳埃德·尼克·特雷费森教授的心得之作。除了回顾早期学习数学的成长过程,以及深耕数值分析领域的心路历程,本书还体现了特雷费森教授对数学本身的深刻思考、对纯数学和应用数学的真切感悟,以及对数学所面临的挑战的反思。 本书适合对数学史、数学思想和数学教育,以及纯数学和应用数学感兴趣的所有读者。 -
初高中数学核衔接李德安本书主要围绕初高中数学的核心知识、常用方法、数学思想、典型问题等内容展开介绍,真正落实数学核心素养.全书共4章:第1章为核心知识再认识——根枝联结篇,主要是对已有数学知识的深度认识;第2章为常用方法再梳理——道法自然篇,主要是对常用的解题方法进行梳理;第3章为数学思想再提升——横跨九霄篇,主要是对分类讨论思想、数形结合思想、函数与方程思想、化归与转化思想的内容进行研究;第4章为典型问题再剖析——扶摇直上篇,是对初中阶段典型的数学问题进行深入的剖析.最后还给出了每节后习题对应的参考答案.本书适合应届初中毕业生,以及中学数学教育者和数学爱好者参考使用. -
非线性算子不动点问题的迭代算法及其应用何振华,李蓉《非线性算子不动点问题的迭代算法及其应用》研究了非线性算子不动点问题迭代逼近的收敛算法。这些算法包括相同空间下的一些非线性算子不动点问题的迭代序列,也包括不同空间下一些非线性算子不动点分裂问题的迭代序列,并在合适的条件下验证了这些算法具有强收敛或者弱收敛性。《非线性算子不动点问题的迭代算法及其应用》给出了许多非常初等的例子,并通过这些例子说明一些非线性算子的关系、有界线性算子范数的计算等,使得更容易理解这些抽象的非线性算子概念及其不动点迭代算法。 -
埃尔朗根纲领(德)F.克莱因 著;何绍庚,郭书春 译F.克莱因在他提出的著名的《埃尔朗根纲领》中,以变换群的观点综合了各种几何的不变量及其空间特性,以此为标准来分类,从而统一了几何学。 -
相对论多体理论与统计力学[以]劳伦斯.P.霍维茨在书中,作者描述了斯图克尔伯格、霍维茨和皮隆理论,该理论为多体问题的讨论提供了一个全面的、经典的和量子力学相对论的协变量框架。该理论的本质特征是爱因斯坦的时间t,即在惯性实验室的标准通用时钟上测量的事件到达时间,也对应于麦克斯韦方程中出现的变量t,其被认为是一个可观察量。事件发生的时间t是主题,还有事件x的位置,其根据是与牛顿假设时间相对应的通用演化参数τ的运动方程。这个参数的广泛性使我们可以为相对论多体系统编写经典动力学和量子动力学方程。在这个框架中,还发展了相应的相对论明显的协变量子场论。
