数学
-
数学之美邵勇 著《数学之美》从几个著名数学问题出发,深入浅出地讲解了与我国初高中的教学实际紧密联系的数学知识,并把知识内容与数学核心素养结合起来。在这条知识主线的周边,穿插介绍知识内容的历史发展过程,对相关数学分支在数学史上的地位进行深入思考,并辅之以数学文化、趣味知识、数学游戏、数学悖论等茂盛枝叶。全书共6章,第1章介绍无处不在的杨辉三角;第2章介绍当我们谈论正方体时,我们能够谈论些什么;第3章介绍了神奇的 2;第4章介绍斐波那契数列与黄金分割;第5章介绍圆锥曲线面面观;第6章介绍感悟数学的魅力与威力。《数学之美》根据中学生的实际需要,并结合 500多幅精美的插图进行讲解,全书讲解清晰自然、特色鲜明,非常适合初高中学生、初高中数学教师、数学爱好者阅读。
-
常微分方程刘玉堂,于梅英,张群力本书主要介绍常微分方程的初等积分法、基本理论、定性和稳定性理论的基本内容具体包括常微分方程的初等解法、解的存在 性定理、高阶微分方程、线性微分方程组、定性和稳定性理论初步等本书各节配有习题并附参考答案,个别习题还有提示,书末附录介绍了Maple在常微分方程中的应用本书可作为高等学校数学专业常微分方程课程的教学用书或参考书,亦可供其他理工科专业选用,也可供其他希望了解常微分方程的读者及相关专业人员参考
-
鸽群优化段海滨,霍梦真本书系统深入地阐述了鸽群优化的起源、原理、模型、理论、改进及应用,力图概括该算法自提出以来的国内外**研究进展。全书共9章,主要包括鸽群优化思想起源和研究现状,鸽群优化机制原理、数学模型和实现流程,鸽群优化收敛性理论证明、首达时间及参数选择,鸽群优化模型改进,鸽群优化在任务规划、自主控制、信息处理、电气能控等领域的典型应用,以及鸽群优化研究前沿与展望。本书面向工程实际应用,突出前沿学科交叉,强调理论基础支撑,着眼优化技术发展,取材新颖,深入浅出,覆盖面广,系统性强,力求使广大读者能快速掌握和应用这一新兴的仿生群体智能优化方法。
-
数学之美黄朝凌 袁力 王丽丽美国数学协会前会长弗朗西斯·苏出版过一本书叫作《数学的力量》,书中讲过这样一个故事:一个美国少年从14岁开始游走在犯罪的边缘,结果在19岁时被判入狱32年。在入狱7年之后,这个少年给苏写了一封信,描述了他对数学的热爱,自学大学数学课程及对它们的理解。此后,苏与这位罪犯保持着长久的交流。苏不禁自问:“这个失去自由的人为什么还要学习数学?数学能带给我们什么?”在书的背面有这样一句话“数学和人生之间有着千丝万缕的联系,迈入数学殿堂最大的收获,是塑造健全的心智和人格,为人生打开更多的可能。”苏曾经写道:“一个脱离了数学情怀的社会,就如同一个缺少了音乐会、公园和博物馆的城市。和数学擦肩而过,你的生命就彻底失去了与美妙思想同歌共舞的机会,也失去了一个观察世界的绝佳角度。理解数学之美将是一场与众不同、令人心醉神迷的体验,每个人都不应该放弃享受数学的权利。”对此,笔者是深信不疑的。作为一名普通的数学教师,常常会思考这样的问题:我们为什么要学习数学?数学能带给我们什么?如何将数学的普遍意义传递给学生?数学的学习和研究是一件不太容易的事情,但是学习和研究数学的过程却是快乐的。一直以来我们孜孜以求,希望能在数学与数学教育上做一些力所能及的事情。数学的学习与研究有时候是需要讲究方法论的,从哲学的角度去考虑数学的方方面面,对数学的理解是很有必要的,而数学的美学是一个不容忽视的课题。为什么要写这样一本书?因为对数学的热爱,对教育的热爱,希望将笔者所知道的关于数学的方方面面知识展现给学生。正因为如此,将对数学之美的理解写成文字,让学生能够从中受益,于是便萌生了撰写《数学之美》这本书的想法。对于大多数人来讲数学往往是抽象、艰涩、枯燥的,让人敬而远之。但是数学是有用的,它在几乎所有学科中都有很重要的应用。因此,学习数学是一件无法避免的事情。数学又是美的,只是数学的美过于深沉与厚重。集雕塑家、数学家、文学家于一身的罗素指出“数学不仅拥有真理,而且还拥有至高的美,一种冷峻而严肃的美,正像雕塑所具有的美一样”。在数学家眼中,漂亮和优美是数学定理的内核。英国数学家哈代曾经说过:“唯有优美的数学才能长存于世。”尽管数学世界里也有芜杂和混乱,但经过一代代数学家的打磨和思考,数学定理优雅的结构和证明逐渐清晰地呈现在世人面前。我们希望通过学习数学,体会数学之美,再通过教育将数学的美传递下去,从而激发学生对数学的兴趣和热爱,更好地促进数学教育的发展。数学的美究竟藏身何处?是大自然的启示还是人的内心体验?要认识数学的美,就必须认识美学意义。必须搞清楚什么是美?什么是美学?如何审美?在此基础上,我们要掌握更多的数学知识,才能体会到数学的美妙之处,而一旦体会到数学的美,又能更好地促进人们去发现和创造数学美。数学的美在于它打开了人类心灵的窗户,不断启迪着人类的智慧,为人类认识世界提供了太多的可能。2018年,笔者黄朝凌在首都师范大学访学的时候,偶遇了黎景辉教授。黎教授主要从事自守型式理论方面的研究,对“相对迹公式”概念的形成有独到的贡献。自1978年起,黎教授先后在中山大学、华东师范大学、上海师范大学、北京大学讲学。黎教授撰写了许多专著,如《代数群引论》、《二阶矩阵群的表示与自守形式》、《模曲线导引》、《拓扑群引论》及《代数K理论》等。当时他穿着一件两个胳膊肘都破了一个洞的白衬衫,面对来自复旦大学、南京大学和上海交通大学的老师和学生,仍然保持着从容。笔者想这就是一部分中国数学工作者的真实写照,他们在数学王国里忘我地遨游,不停地探索,却并不在乎自己穿着什么,或者吃着什么。笔者希望自己是这样的人,也希望自己的学生中有许多这样的人。本书从美学的最基本问题谈起:什么是美?人为什么需要美?如何审美?美的形式有哪些?进而试图阐释数学的本质、数学的重要意义及数学美的各种形式。最后,笔者选取了16个我们认为能够展现数学美的课题,详细地阐述了每个课题从问题的萌芽、发展到学科的成熟。希望能够以此说明数学美的存在,并希望读者能够从中感受到数学的美。谨以此书送给我们的学生们,希望他们能够从本书中体会到数学的美,并愿意将自己的才华与精力用来创造数学美。对于学生来讲,有时候知道数学的思想和方法是很重要的,而美的事物往往能够唤醒人们内心的那份热爱。本书的写作目的是帮助读者理解数学与数学之美,从而更进一步地理解数学之用,为今后的学习和工作打下数理逻辑的基础。本书撰写过程中得到了湖北文理学院领导和老师们的大力支持,尤其得到教务处处长聂军教授和王海涛老师,以及数学与统计学院刘浩书记、王成勇院长、姚威副书记、丁凌副院长和张旻嵩副院长的鼎力支持。本书出版还得到湖北文理学院和汉江师范学院资助。林霜同学利用GeoGebra 50软件绘制了本书中的几何图形,冉馥菘同学利用Sai2设计软件绘制了本书中的其他图。张敏捷副教授、陈仕军副教授阅读了部分章节并提出了修改意见,这里一并表示感谢。由于笔者水平有限,虽然竭尽全力,但书中不足之处在所难免,特别是对数学之美的阐述不甚完美,欢迎读者提出宝贵意见。
-
试验设计与数据统计分析武涛 齐龙暂缺简介...
-
数学与社会胡作玄《数学与社会》广泛地论述了数学与社会这个非常大的问题。分析了数学在社会中的地位、作用,尤其是对整个科技的发展所起的推动作用。同时,还介绍了许多数学家的数学生涯。对日常生活中的数学和社会生产中的数学,以及发展数学所必需的社会条件,作者都发表了许多独特的见解,读后颇有新鲜感。
-
数学建模入门与提高朱建新本书旨在以丰富的实例讲解数学建模的一般步骤、基本方法和基本技巧,内容涉及数学模型的概述、初等方法建模、应用高等数学建模(侧重微分方程建模)、层次分析方法建模、离散方法建模(含组合优化建模、线性规划建模、差分方法建模、最小覆盖方法建模)、聚类分析方法建模、对策和决策方法建模、交通流模型及稳定性问题的探讨。附录中给出了2014年美国大学生数学建模特等奖和SIAM奖优秀论文、2019-2020美国大学生数学建模一等奖优秀论文,2020年中国大学生数学建模全国一等奖优秀论文。本书可作为数学各专业《数学模型》必修课程的教材,也可作为面向各专业的通识课《数学建模》和面向数学建模竞赛的辅导教材。
-
微积分马同学(@马同学图解数学)暂缺简介...
-
图解统计与概率牛顿出版社编;《科学世界》杂志社译近来,被称为“数据科学家”的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是“统计与概率”。《BR》统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。《BR》在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的“贝叶斯统计”,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及“统计大师”汉斯·罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。
-
图解中学三角函数(日)牛顿出版社编;《科学世界》杂志社 译说到三角函数或正弦、余弦、正切等,为了应付考试而死记硬背公式但并不十分明白的人也不在少数。也有人明明学习了,但觉得在生活中一次也没有用到过三角函数。《BR》其实人们生活在现代社会,肯定受到过三角函数的“恩惠”。因为从网络上的动画制作到地震速报,很多技术的基础都是三角函数。《BR》本书通过对三角函数的起源与使用方法,以及从三角函数中诞生的实用数学的“代表选手”——“傅里叶分析”的原理等进行挖掘,形成了内容较为充实的一册“三角函数”科普读物。《BR》第一章在说明三角函数之前,对三角形的性质及使用方法,以及三角函数的起源进行介绍;第二章则对三角函数的基础知识(三角比)进行清晰的解释;在第三章中介绍了相关的重要定理并对古代数学家进行的三角函数研究进行介绍;在第四章中脱离“三角形”的束缚,对三角函数的定义进行扩展,可以通过三角函数来表示“波”的性质;第五章则从 0开始对“傅里叶分析”进行介绍;第六章中则逼近由三角函数和“虚数”所交织出的更为深奥的三角函数世界,进一步介绍了三角函数的“伙伴函数”。