数学
-
世界数学奥林匹克经典徐家鹄 著内容简介奥数并不是数学解题技术的集合,而应是增进数学教育的一个体系,这是作者一直以来的一个理念。一个优秀学生要能灵活并严谨地思考问题。逻辑推理能力只是一个基本功,还要有能从直觉出发直击问题核心的能力。要能通过预测、归纳、想象、构造和设计来实现自己的创新性想法,并能在具体与抽象之间随意切换。这些都是本书作者希望通过奥数训练来让学生提升的能力。作者原是复旦大学数学系教授,后移居新加坡。这套书是根据作者在新加坡维多利亚初级学院、华侨中学、南洋女中、德明政府中学等名校教授了几十年的数学奥林匹克培训课程讲义改编而成的。其范围和深度不仅涵盖和超出了通常的数学教学大纲,而且还介绍了现代数学中的各种概念和方法。整套教程共4卷,初中、高中各2卷,每一卷包含15讲,每讲都以概念、理论和方法为核心,再举8―10个例题来进一步解释和丰富这些核心思想并表明它们的应用,每一讲还留有适当数量的题目以供读者练习和测试,这些题目选自中国、美国、俄罗斯、德国、英国、爱尔兰、罗马尼亚、匈牙利、保加利亚、波兰、白俄罗斯、波罗的海地区、摩尔多瓦、克罗地亚、斯洛文尼亚、希腊、意大利、巴尔干半岛、土耳其、新加坡、日本、韩国、越南、泰国、印度、伊朗、澳大利亚、新西兰、加拿大、哥伦比亚等世界各地的数学奥林匹克竞赛真题。本套书可作为数学奥数课程的教材,也可供优秀学生自学使用,或作为相关教师和研究人员的参考书。本套书的另一大特点是用英文写成,帮助读者了解数学研究是如何去专业表达的,与国际接轨,助力更多的年轻读者在未来走上科学研究之路。
-
工程数学 计算方法吉林大学数学学院,术洪亮,李亚军,李佳民 编《工程数学 计算方法(第三版)》依据“数值计算方法”课程的教学基本要求,结合工程技术领域中常用的计算方法,系统地介绍了求解线性代数方程组的直接法和迭代法、非线性方程与方程组的求根、函数的插值与平方逼近、数值积分、常微分方程初值问题的数值解、求矩阵特征值和特征向量的迭代法等。全书注重基础知识与基本方法的科学性、严谨性和实用性。各章配备一定数量的实例和习题,并附有部分习题参考答案。《工程数学 计算方法(第三版)》可作为理工科非数学类专业高年级本科生和硕士研究生“计算方法”课程的教材,也可供工程技术人员学习和参考。
-
世界数学奥林匹克经典徐家鹄 著内容简介奥数并不是数学解题技术的集合,而应是增进数学教育的一个体系,这是作者一直以来的一个理念。一个优秀学生要能灵活并严谨地思考问题。逻辑推理能力只是一个基本功,还要有能从直觉出发直击问题核心的能力。要能通过预测、归纳、想象、构造和设计来实现自己的创新性想法,并能在具体与抽象之间随意切换。这些都是本书作者希望通过奥数训练来让学生提升的能力。作者原是复旦大学数学系教授,后移居新加坡。这套书是根据作者在新加坡维多利亚初级学院、华侨中学、南洋女中、德明政府中学等名校教授了几十年的数学奥林匹克培训课程讲义改编而成的。其范围和深度不仅涵盖和超出了通常的数学教学大纲,而且还介绍了现代数学中的各种概念和方法。整套教程共4卷,初中、高中各2卷,每一卷包含15讲,每讲都以概念、理论和方法为核心,再举8―10个例题来进一步解释和丰富这些核心思想并表明它们的应用,每一讲还留有适当数量的题目以供读者练习和测试,这些题目选自中国、美国、俄罗斯、德国、英国、爱尔兰、罗马尼亚、匈牙利、保加利亚、波兰、白俄罗斯、波罗的海地区、摩尔多瓦、克罗地亚、斯洛文尼亚、希腊、意大利、巴尔干半岛、土耳其、新加坡、日本、韩国、越南、泰国、印度、伊朗、澳大利亚、新西兰、加拿大、哥伦比亚等世界各地的数学奥林匹克竞赛真题。本套书可作为数学奥数课程的教材,也可供优秀学生自学使用,或作为相关教师和研究人员的参考书。本套书的另一大特点是用英文写成,帮助读者了解数学研究是如何去专业表达的,与国际接轨,助力更多的年轻读者在未来走上科学研究之路。
-
工程数学 复变函数与积分变换学习辅导与习题全解吉林大学数学学院,高彦伟,宋东哲,王忠仁 编《工程数学 复变函数与积分变换(第三版)学习辅导与习题全解》内容包括复数与复变函数、解析函数、复变函数的积分、级数、留数、共形映射、傅里叶变换、拉普拉斯变换以及应用问题选读等,各章精心设计了适量的习题并在书末附有参考答案。适当阐述数学方法的物理意义与工程应用背景是该书的一个特色,最后一章选编了在信号处理等工程领域中几个有代表性的应用问题,并在习题中安排了相应的数学实验内容。书中“序列的傅里叶变换”是其他同类教材所没有的。《工程数学 复变函数与积分变换(第三版)学习辅导与习题全解》可作为物理学、电子科学与技术、计算机科学与技术、通信工程、应用地球物理学、资源与环境科学以及其他涉及信息处理的相关专业的教材,也可供工程科技人员参考。
-
世界数学奥林匹克经典苏勇,熊斌 著《世界数学奥林匹克经典》由数学竞赛命题委员会主席和数学邀请赛命题委员会主席等专家共同编著。《世界数学奥林匹克经典》自出版后就深受广大使用者的好评。《世界数学奥林匹克经典》为英文版本。
-
物质与运动[英]詹姆斯-克拉克-麦克斯韦 著,涂泓本书是19世纪英国著名物理学家、数学家、经典电动力学的创始人詹姆斯?克拉克?麦克斯韦对牛顿动力学的一本优秀的导引。在这本篇幅不大但内容丰富的小册子中,麦克斯韦从物理科学的基础出发,一步步论述了运动、力、质心、功和能、摆和重力,直至万有引力,以此综览了19世纪晚期的物理学。它被许多教育工作者认为是有史以来好的介绍基础科学的论著之一,着笔清晰而简明,并且蕴含了麦克斯韦著作所特有的新鲜和优雅。全书共有149个小节,并在文末收录了麦克斯韦的名著《论电和磁》中“论连接系统的运动方程”一章以及关于“自然界中的力的相对性”和“小作用量原理”的两个附录。 本书初出版于1877年,直至今日,这本著名的小册子仍在世界各地不断重印出版,说明它仍有很强的生命力和重要的参考价值。本书可供从高中生到科学史学者的广泛的读者阅读。读者研读此书后对近代物理的根源会有一个概观上的认识。
-
世界数学奥林匹克经典张垚 著This book consists of three parts: fundamental knowledge, basic methods and typical problems. These three parts introduce the fundamental knowledge of solving combinatorial problems, the important solutions to combinatorial problems and some typical problems with often-used solutions in the high school mathematical competition respectively.In each chapter there are necessary examples and exercises with solutions. These examples and exercises are of the same level of difficulty as the China Mathematical League Competitions which are selected from mathematical competitions at home and abroad in recent years. Some test questions are created by the author himself and a few easy questions in China Mathematical Olympiad (CMO) and IMO are also included. In this book, the author pay attention to leading readers to explore, analyze and summarize the ideas and methods of solving combinatorial problems. The readers' mathematical concepts and abilities will be improved remarkably after acquiring knowledge from this book.
-
世界数学奥林匹克经典余红兵 著Number theory is an important research field in mathematics. In mathematical competition, problems of elementary number theoryoccur frequently. This kind of problems uses little knowledge and has lots of variations. They are flexible and diverse.In the book we introduce some basic concepts and methods in elementary number theory via problems in mathematics competition.We hope that readers read the book with paper and pencil, and try to solve them by themselves before they read the solutions of examples.Only in this way can they really appreciate the tricks of problem solving.
-
世界数学奥林匹克经典冯志刚 著Mathematical induction is an important method used to prove particular math statements and is widely applicable in different branches of mathematics, among which it is most frequently used in sequences.This book is rewritten on the basis of the book Methods and Techniques for Proving by Mathematical Induction , and is written with an understanding that sequences and mathematical induction overlap and share similar ideas in the realm of mathematics knowledge. Since there are a lot of theses and books related to this topic already, the author spent quite a lot of time reviewing and refining the contents in order to avoid regurgitating information. For example, this book refers to some of the most updated Math Olympiad problems from different countries, places emphasis on the methods and techniques for dealing with problems, and discusses the connotations and the essence of mathematical induction in different contexts.The author attempts to use some common characteristics of sequences and mathematical induction to fundamentally connect Math Olympiad problems to particular branches of mathematics. In doing so. the author hopes to reveal the beauty and joy involved with math exploration and at the same time, attempts to arouse readers' interest of learning math and invigorate their courage to challenge themselves with difficult problems.
-
高等数学习题集及解析曲风龙,孙丰云 著全书按照《高等数学》教学大纲的基本要求进行编写。本书为满足基础课教学的需要,以巩固学生的基础知识、强化数学的理解能力、提高数学的应用能力为目标,由烟台大学的一线教师组织编写。作者具有深厚的数学专业功底和丰富教学经验。本书内容包含极限与连续,导数与微分、中值定理、不定积分、定积分、定积分的应用等部分的习题及解答,并附有两套模拟试题。本书可作为高等院校非数学专业学生的习题册,也可作为学生自学的参考书。