数学
-
从七种思维看数字经济郑新立 刘西友 著党的二十大报告中指出,不断提高战略思维、历史思维、辩证思维、系统思维、创新思维、法治思维、底线思维能力,为前瞻性思考、全局性谋划、整体性推进党和国家各项事业提供科学思想方法。当前,顺应信息化、数字化、网络化、智能化的时代特征、实践规律和发展趋势,要求每一个领导干部增强发展数字经济本领,推动数字经济更好服务和融入新发展格局。要想在推动发展数字经济过程中形成看家本领,就需要把坚持问题导向和深刻把握七种思维的根本前提、时代指向、基本蕴涵紧密结合起来,把立场观点方法转化为干事创业、攻坚克难的“桥”与“船”,提升指导和参与数字经济实践的原则性、系统性、预见性和创造性,增强分析研究解决数字经济新情况、新问题的能力。本书从七种思维的内涵与应用的角度,理论与实践相结合,用七种思维来分析数字经济发展问题,对广大党员干部学会使用七种思维,推进数字经济治理,具有一定的价值。 -
讲义与问题V. I. Arnold, TranslVladimir I. Arnold(1937—2010)是 20 世纪末最伟大的数学家之一。他在许多领域做了大量杰出工作;在另一个层面上,他保持了俄罗斯数学的强大传统,即为对数学感兴趣的年轻学生写作并直接教导他们。本书包含了 Arnold 在这方面所做的贡献。 全书共分四个部分:“连分数”部分将高中数学常见的一个拓展主题引向只有数学大师才能想象的方向。“Euler 群”部分也是一个类似的拓展主题,Arnold 将其置于数学背景之下,并运用大量的数学工具,将其推广至远超出常规的范畴。“复数”部分的背景是物理学,但 Arnold 巧妙提取了讨论的数学方面,让学生能够在还未掌握量子力学领域的知识前就能够理解它。“给 5 至 15 岁儿童的问题”部分是作者最喜欢的智力问题的集合。尽管许多问题不是原创的,但它们都值得思考,都需要解题者跳出自己的思维定势。Arnold 的长期朋友和合作者 Dmitry Fuchs 为其中的一些问题提供了解答。 在阅读本书时,人们会有一种走在通往山顶的道路上的感觉,然后眼前呈现出一幅在地面上无法想象的美景。然而,Arnold 的阐述风格是毫不留情的。即使是专业数学家,在阅读中也会发现,往往需要几个小时的思考才能理解某些段落,读者必须耐心面对思维省略和推理跳跃,这些都是 Arnold 的意图所在。 本书可供数学专业的学生、教师、专业研究人员以及所有喜爱数学的读者阅读参考。 -
数学谜题Peter Winkler 著,陈晓敏本书由CRC出版社于2020年12月出版,是作者关于数学谜题的最新力作。谜题的选择是区分本书和其他同类读物的重要标准,本书所列问题包含了当前最好的数学谜题且十分有趣,其背后是大量的现代数学,尤其是组合数学和计算机科学中重要的、前沿的内容、思想和方法。每章均介绍了解决数学谜题的技巧和例子,并在之后的数学定理证明中运用了这些技巧,对读者理解高深的数学内容有很好的启示作用。本书的出版可让国内更多的高校师生、数学爱好者甚至科研人员能够深入接触到这一宝藏,并从中受益匪浅。 书中给出三百多道数学趣题及提示,并在主体部分详细阐述所有谜题的分析、解答以及深入讨论。这些趣味横生的数学谜题涉及数学的各个方面,包括基本的组合计数、图论、概率和期望、游戏和博弈论、逻辑和集合论、高维空间几何、信息论等,可作为广大数学爱好者、大中学师生以及科研工作者提高数学素养的上佳读物。 -
解析数论Jean-Marie De Koninc本书汇集了解析数论中一系列有趣的话题,是解析数论领域的入门读物,重点关注整数的剖分,即对整数的乘法结构的研究。本书涵盖了一些最重要的主题,包括算术函数的全局和局部性态、光滑数的广泛研究、Hardy-Ramanujan和Landau定理、特征和Dirichlet定理、abc猜想及其一些应用,以及筛法。本书最后还专门讲述了整数复合指数的问题。 本书每章末尾都有一系列精心挑选的问题。这些问题可以强化读者对材料的理解。作者提供了偶数号问题的解答,使得本书非常适合那些想要测试其对书中理论的理解程度的读者。 -
量子图导论Gregory Berkolaiko“量子图”被认为是一维复合体,并配备了微分算子(“Hamilton算子”)。当人们考虑各种波通过类似于图的薄邻域的准一维(例如“中等尺度”或“纳米尺度”)系统传播时,量子图在数学、物理、化学和工程中自然而然地作为简化模型出现。至少从 20世纪30年代开始,有关量子图的研究已经出现,从那时起,量子图技术已经成功地应用于数学物理、一般数学及其应用的各个领域。例如,动力系统理论、控制理论、量子混沌、Anderson局域化、微电子学、光子晶体、物理化学、纳米科学、超导理论等。 量子图提出了许多非平凡的数学挑战,这使得它们成为数学家钟爱的对象。量子图的研究汇集了来自图论、组合学、数学物理、偏微分方程和谱理论等领域的工具和直觉。 本书全面介绍了这个主题,收集了主要的概念和技术。它还包括对当前量子图研究和应用状况的概述。 -
大型网络和图极限László Lovász世界上许多有趣的结构和现象可以用网络来描述。发展大型网络的数学理论是重要的挑战。本书描述了最近十年出现的新方法——图极限理论。该理论与研究大型网络的其他方法,如计算机科学中的“性质检验”和图论中的正则划分,有着丰富的联系。它在极值图论中有一些应用,包括非常普遍的问题的确切公式和部分答案,例如图极限理论中哪些问题是可判定的。它还与数学的其他领域(经典和非经典的, 如概率论、测度论、张量代数和半正定优化)有着不易察觉的联系。 本书解释了许多这些联系,首先在非正式的层面上强调需要应用更高级的数学方法,然后给出了图同态代数理论和图极限理论的确切发展。 -
用数学的语言看宇宙[日]加藤文元本书是解读望月新一“跨视宇Teichmüller理论(IUT理论)”的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本“IUT理论”的解读手册。书中侧重解读“IUT理论”的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与经典数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解“IUT理论”的入门读本,也适合作为学生了解数学思考方法的参考读物。 -
随机算子Michael Aizenman, Si本书介绍了关于量子光谱和动力学上无序效应的数学理论入门。涵盖的主题从自伴算子的谱和动力学的基本理论到这里通过分数矩量法提出的Anderson局域化,再到最近关于共振离域的结果。全书共有十七章,每章都集中于特定的数学主题或将理论与物理相关联的例证,例如量子Hall效应的影响。数学章节包括量子光谱和动力学的一般关系、遍历性及其含义、建立光谱和动力学局域化机制的方法、Green函数的应用和性质、它与本征函数关联子的关系、Herglotz-Pick函数的分数矩、树图算子的相图、共振离域、谱统计猜想及相关结果。此外,本书还包含作者在各自机构所开设课程的笔记,这些笔记被研究生和博士后研究人员广泛参考。::::::::::::::-自从上一本关于这个主题的重要著作问世以来,已经有将近25年的时间了。作者巧妙地更新了主题,但更重要的是,以清晰的方式呈现了他们自己的概率洞见。这本精彩的书非常适合研究人员和高年级学生阅读。—Barry Simon, California Institute of Technology -
抽象分析教程John B. Conway本书涵盖了博士研究生一年级抽象分析课程的相关内容。前半部分介绍了测度论的核心内容,包括对 Fourier 变换的介绍,这些材料的学习可以在一个学期内轻松完成。后半部分涉及基础泛函分析,也适用于一个学期的学习。在基础知识之后,本书讨论了线性变换、对偶性、Banach 代数的元素和 C*-代数,并以 Hilbert 空间上正规算子的酉等价类的特征作为结束。 本书在内容上是自成一体的,读者只需要单变量函数和度量空间基础的背景知识。按照作者的理念,最好的学习方法是从特殊情况开始,然后进行一般情况的学习,学习中包含大量的示例和练习。 本书适合对分析学感兴趣的本科生、研究生和数学研究人员阅读参考。 -
数学与生活1234[日]远山启9787115630179 数学与生活4:函数是什么 59.809787115544568 数学与生活3 无穷与连续 59.809787115542083 数学与生活2 要领与方法 59.809787115370624 数学与生活(修订版) 69.80《数学与生活4:函数是什么》本书为日本数学家远山启的函数科普作品,书中以“理解函数”为线索,以人物对话的形式,从算术开始逐步讲解函数的本质概念及其发展,为读者完整呈现了函数概念,并引导读者理解“从静止走向运动、从离散走向连续、从运算走向关系”的数学思想。本书可作为理解函数的科普读物,也可作为函数教学的参考资料。《数学与生活3 无穷与连续》不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢?本书是从“欣赏”的角度通俗解读现代数学的科普作品。书中用直观、生动的例子,梳理了现代数学的发展脉络,在“直观”与“抽象”交织的视角下,展示了数学思考中的“自由性”与“逻辑性”。本书可作为了解现代数学的通俗读本,也适合作为高中生、大学生理解数学的参考资料。《数学与生活2 要领与方法》本书为日本数学教育议会创立者远山启的数学教育科普作品。书中通俗解读了数学教育中的重点、难点知识,用直观的方式梳理了“量与数”“集合与逻辑”“空间与图形”“变数与函数”的知识体系,并结合作者多年的教学与研究经验,向读者传授教学方法与学习技巧,引导学习者掌握具有发展性的思考方法,真正从原理上理解数学知识。本书适合数学爱好者阅读学习,也适合作为教师教学、家长辅导的参考指南。《数学与生活(修订版)》《数学与生活(修订版)》以生动有趣的文字,系统地介绍了从数的产生到微分方程的全部数学知识,包括初等数学和高等数学两方面内容之精华。这些知识是人们今后从事各种活动所必须的。书中为广大读者着想,避开了专用术语,力求结合日常逻辑来介绍数学。读来引人入胜,枯燥之感。从中不但可得益于数学,而且还可学到不少物理、化学、天文、地理等方面的知识。
