数学
-
数学文化览胜集李国伟面对21世纪国际上人才竞争的激烈形势,中国数学界自然非常关注数学教育的状况,有些令人尊敬的数学家已经把目光从超常教育或精英人才的培养,移往面向广大普通学生的数学教育。我们应该敞开胸怀,把握时代的脉搏,以丰富多样的数学教育内容让学生感受数学与文化、历史、艺术等各种知识的关联互动,使他们能够在终身学习历程中随个人需求适时获取。 本书中“教育”涵盖的范围取宽松的解释,从强调小学数学教育的重要性到研究领域的评估,由事关学校的正规教育到涉及社会的普及教育,虽然看似有些散漫芜杂,但是贯穿作者的观点的基调,仍然是伸张主流之外的声音,维护多元发展的氛围。 -
动力系统中的小除数理论及应用司建国,司文《动力系统中的小除数理论及其应用》详细介绍动力系统中的一维和多维小除数理论及其应用, 系统收录了作者二十余年的研究成果. 《动力系统中的小除数理论及其应用》内容涉及 Diophantine 数及向量、Brjuno 数及向量、Liouville 数及向量的基本性质; 一维小除数理论在研究解析芽的线性化、平面映射的解析不变*线、出现在量子力学和组合数论中的泛函微分方程的解析解、广义迭代根问题的诸多方面的应用; 多维小除数理论在研究圆周和环面上的拟周期驱动流的线性化、退化拟周期驱动系统的不变环面的存在性和拟周期分叉、具有拟周期驱动偏微分方程 Liouville 不变环面的保持性以及二维完全共振薛定谔方程拟周期解的构造方面的应用. 《动力系统中的小除数理论及其应用》各章内容自相包含, 理论与应用并重, 便于读者阅读并且使读者尽快地借助小除数理论进入研究动力系统等学科的前沿. -
Hopf代数表示范畴中的Monoidal不变量王志华本书在Hopf代数表示范畴层面引入一些新的monoidal不变量,这些不变量包括表示范畴的Green环、Casimir数、高阶Frobenius-Schur指标、Grothendieck环、某种类型的多元齐次多项式等。著作主要研究这些不变量在Hopf代数表示理论中所发挥的作用,揭示这些不变量与Hopf代数表示范畴中其它重要研究对象之间的关系,通过具体实例展示这些不变量的具体表现形式等。这些不变量的引入为人们研究Hopf代数表示范畴的结构与分类提供了新的工具,也为人们深入理解与研究monoidal范畴提供了新的视角。本书所展示的一些研究成果对于推动代数表示理论体系的发展与完善,促进Hopf代数、张量范畴等数学分支的交叉与融合具有积极的作用。 -
计算复杂系统郭大蕾本书应用智能计算的理论与方法,结合智能控制理论对工程系统与社会科学中普遍存在的非线性动力学与控制问题进行了详细阐述,介绍了目前在该领域的一些基本分析方法和计算技术,内容涉及复杂性与复杂系统、智能计算、复杂网络、多尺度分析、计算材料、计算经济、计算实验、非线性建筑、复杂交通工程管控、决策支持、管理与控制以及其他智能计算在新兴领域中的进展。本书将理论分析、数据计算和实验研究相结合,注重结果的完整性和真实性。 -
几类非线性偏微分方程解的存在性和多重性王丽霞非线性方程是连接数学与其他自然科学和社会科学的重要桥梁。非线性方程,如薛定谔-泊松方程、克莱因-戈登-麦克斯韦系统、基尔霍夫方程、Hardy-Sobolev-Maz'ya方程和Choquard方程,都能很好地反映物理学中某些实际问题的本质现象。本书中,我们主要利用Ekeland变分原理、临界点理论中的Mountain Pass定理和Ljusternik Schnirelman型极大极小值方法等变分方法,对这些非线性方程:Schrodinger-Poisson方程、Klein-Gordon-Maxwell系统、Kirchhoff方程、Hardy-Sobolev-Maz'ya方程和Choquard方程,给出了我们的新结果。我们研究了这些方程的解的存在性、解的多重性和变号解。 -
庞特里亚金自传Л. С. 庞特里亚金 著,霍晔 译庞特里亚金,苏联杰出数学家,13岁时因事故导致双目失明,但凭借令人惊叹的坚韧精神和对数学的热爱,终成一代大师。他对拓扑学尤其是代数拓扑学的发展产生了决定性影响,其著名的“庞特里亚金极大值原理”成为控制论的里程碑。他的学术思想在很多方面指引了20世纪数学的发展。 庞特里亚金始终关注社会生活,在各种会议上发表精彩且热情洋溢的讲话。他担任过苏联驻国际数学联盟代表,主管过数学文献的出版,曾尝试解决苏联中小学教育中的一些问题。 由于身体的缺陷,庞特里亚金不方便记日记,但凭借机敏的头脑和超强的记忆力,他能够洞察最微小的细节并牢记于心。本书是庞特里亚金在晚年写的自传,手稿由其遗孀提供,很好地记录和反映了苏联科学发展一段重要时期的历史。庞特里亚金在书中大胆分享了学术界很多事件的内情和自己的真情实感,本书的历史价值和教育价值也正在于此。 -
基于代数理论的纠错码和量子纠错码研究高云本书主要面向大学数学、计算机科学与技术专业信息安全方向的高年级本科生、研究生,以及对纠错编码感兴趣的教师和科研人员。全书分为10 章。第1章是绪论,介绍了纠错码的研究意义与进展,以及量子纠错码的研究意义与进展。第2和3章分别介绍了有限环上的自对偶循环码和拟循环码的一些结论。第4章介绍了指数为1的循环码的代数结构和极小生成集。第5章介绍了通过有限环上的循环码构造量子纠错码的方法。第6和7章分别介绍了有限环上单偶长常循环码的对偶码的代数结构和一类自同态环的算术结构。第8和9章分别介绍了通过有限域上的线性斜循环码构造量子纠错码的方法和一些最优的循环线性码。第10 章简要总结本书的主要内容并提出几个以后需要考虑的问题。 -
Lie代数的分类和识别Libor ?nobl,Pavel Wi本书的目的是为将Lie代数和Lie群应用于解决科学和工程中出现的问题的研究人员和实践者提供工具。作者解决了用一种更合适的基来表示在任意基上得到的Lie代数的问题,在这种基中Lie代数的所有基本特征都是直接可见的。这包括实现直和分解、识别根和 Levi 分解、计算零根和 Casimir 不变量。每种算法都给出了实例。 对于低维Lie代数,这使得完全识别给定的Lie代数成为可能。作者提供了一个代表性列表,列出了所有维数小于或等于6的Lie代数及其重要性质,包括它们的 Casimir 不变量。该列表的排序方式,使识别变得容易,只使用Lie代数的与基无关的性质。他们还描述了某些具有完全或部分分类的任意有限维的幂零和可解Lie代数类,并详细讨论了它们的构造和性质。 本书的内容基于先前散布在期刊文章中的材料,其中许多文章由作者之一或两位作者与合作者共同撰写。本书的读者应该熟悉入门水平的Lie代数理论。 -
公理化几何学John M. Lee几何学的故事就是数学本身的故事:欧几里得几何学是第一个被系统研究并建立在坚实逻辑基础上的数学分支,它是现代数学基础上公理化方法的原型。作为一种逻辑思维模式,它已经被教授给学生两千多年了。本书讲述了公理化方法如何从欧几里得时代发展到现在,以帮助我们理解数学是什么,如何阅读和评估数学论证,以及为什么数学已经达到了如此高的确定性水平。它主要面向计划教授中学几何的高年级本科生,但也适合任何希望更好地了解几何和公理化方法的人。它引入了现代、严谨的欧几里得和(较少程度上的)非欧几里得几何的公理化处理,为学生提供了充足的机会来练习阅读和书写证明,同时发展了中学教师在课堂上需要了解的大部分具体的几何关系。 -
解析数论Jean-Marie De Koninc本书汇集了解析数论中一系列有趣的话题,是解析数论领域的入门读物,重点关注整数的剖分,即对整数的乘法结构的研究。本书涵盖了一些最重要的主题,包括算术函数的全局和局部性态、光滑数的广泛研究、Hardy-Ramanujan和Landau定理、特征和Dirichlet定理、abc猜想及其一些应用,以及筛法。本书最后还专门讲述了整数复合指数的问题。 本书每章末尾都有一系列精心挑选的问题。这些问题可以强化读者对材料的理解。作者提供了偶数号问题的解答,使得本书非常适合那些想要测试其对书中理论的理解程度的读者。
