数学
-
微积分系列[美] 戴维·M. 布雷苏(David M. Bressoud),[美]阿德里安·班纳 [日]神永正博 [日]小平邦彦,[美]William Dunham 著《微积分溯源:伟大思想的历程》 本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的"小书"。本书适合中学以上水平的数学爱好者、学生和教师阅读。 《普林斯顿微积分读本(修订版)》本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《简单微积分 学校未教过的超简易入门技巧》本书为微积分入门科普读物,书中以微积分的"思考方法"为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需"轻松阅读"便可以理解微积分原理的入门书。 《微积分入门 修订版》微积分入门 为日本数学家小平邦彦晚年创作的微积分名作,有别于一般的微积分教科书,本书突出"严密"与"直观"的结合,重视数学中的"和谐"与"美感",讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。 《微积分的历程:从牛顿到勒贝格》本书介绍了十多位数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。《微积分的历程:从牛顿到勒贝格》兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
-
创新设计思维原则 Principles of Innovative Design ThinkingWenjuan Li, Zhenghe本书提出了一种创新设计理论的综合体系,能够提升设计中所必需的创新思维和创造力。该理论构建了设计中各元素以及设计过程的模型和算法,能够帮助收集和量化概念设计阶段中可用的较为模糊的设计信息,通过推动创造性的思维和抽象性思考,促进设计的逻辑性和结构化的进程。该理论应用可拓学探索设计问题的重构和设计思维的发散,并应用公理化设计理论指导功能需求和设计参数的迭代分解,在此过程中促进创新思维和创新设计方案的产生。可拓学与公理化设计理论的协同作用,是跨专业、跨学科的协同研究和发展,同时融合了中国哲学中的抽象思维模式和西方理论中的迭代设计流程。 本书能够帮助学生以及工程、自然和社会科学、商业等多领域的从业人员建立解决设计问题的创造性和创新性的思维及方式。
-
历届全国初中数学竞赛经典试题详解谢树发本书精选了历届全国、省、市初中数学竞赛优秀试题,试题数量超过了1000道,所选的每道题都有详细解答,提升了它的使用价值和权威性.书中的三段"小插曲",即"解题策略大盘点(一)(二)(三)",将初中数学常用的解题策略和技巧,通过对典型例题精辟的分析和详尽的讲解,系统地介绍给中学生读者,深入浅出,通俗易懂,同学们乐于接受也容易掌握,这是本书的一大特色.本书适合中学师生及数学爱好者参考阅读.
-
丛代数理论导引李方,黄敏本书介绍丛代数研究的理论基础和部分专题,其中,基础部分,畚重从代数方法和组合方法两方面介绍丛代数的结构;专题部分,介绍丛代数理论与数学各个方面(包括拓扑、几何、表示论、数论、矩阵论等)的联系。在一些专题的介绍M,指出了目前理论的研究进展和面临的问题。
-
复数、复函数及其应用张顺燕本书分为6章,深入浅出,介绍的都为数学中很重要的问题。第一章介绍了基本知识,第二章介绍了保角变换,第三章介绍了法瑞序列与福特圆,第四章介绍了几何作图,第五章介绍了代数方程式的根,第六章介绍了整函数与毕卡小定理。
-
化归与归纳 类比 联想史久一 朱梧槚化归,就是通过某种转化,将复杂的问题转化成某一类已解决或较容易的问题,是数学方法论中重要的思想之一。本书所有的数学知识都被限制在中学范围以内,能使一般读者以很高的视角去看待数学,并掌握化归这种在生活中十分重要的思维方式。
-
基谢廖夫立体几何[苏]基谢廖夫《基谢廖夫立体几何》介绍了平面几何的相关知识及问题,共分4章,主要包括直线和平面、多面体、旋转体、向量与几何基础等相关内容,同时收录了相应的习题。《基谢廖夫立体几何》按照知识点分类,希望通过对习题的实践训练,可以强化学生对平面几何基础知识的掌握,激发读者的兴趣,启迪思维,提高解题能力。《基谢廖夫立体几何》适合中学师生、数学相关专业学生及几何爱好者参考使用。
-
高中数学各种题型解法大全赵南平本书根据已经实施的《普通高中数学课程标准》提出的6个核心素养精神编写而成,并在书中加入了作者对创新题型解法的研究,每节内容主要包括“解法指导""典型范例”"练习题""练习题解答”4个版块.书中的“解法指导"版块主要针对高考试卷中出现的各种题型进行了归纳、总结,收录的题型在“典型范例”版块中有对应的例题及解答,已基本涵盖所有题型,资料新且齐全.本书还包含了近几年各省高考数学试题中的精华,为准备高考的学生提供了翔实的参考资料.本书适合中学生、数学教师及数学爱好者参考使用.
-
椭圆曲线颜松远全书共分为八章.第一章介绍与椭圆曲线有关的不定方程的知识,第二章介绍椭圆曲线的历史起源,第三章介绍椭圆曲线的重要性质,第四章介绍与椭圆曲线理论有关的一个极为重要的猜想,即Birch和Swinnerton-Dyer猜想(简称为BSD猜想),第五章介绍椭圆曲线在证明费马大定理中的应用,第六章介绍椭圆曲线在质性判定中的应用,第七章介绍椭圆曲线在整数分解中的应用,第八章介绍椭圆曲线在现代公钥密码体制中的应用.
-
周期函数的近似方法和特性[乌克兰] 马伊奥尔·季曼 著《周期函数的近似方法和特性——特殊课程(俄文)》是一部俄文原版的数学专著,书名译成中文为《周期函数的近似方法和特性——特殊课程》,作者马伊奥尔·季曼,乌克兰人,物理和数学科学博士,教授,第聂伯罗彼得罗夫斯克国立大学高等数学教研室负责人。如何来介绍和评价该书呢?笔者只是一位早年曾经学过一点高等数学的数学编辑,并非饱学之士,更非鸿学大儒,所以只能谈一点自己在决定购买版权时的私人感受。初对该书感兴趣还是要从一道奥数试题谈起,这种写法完全是效仿大家的,比如华罗庚先生曾写过《从单位圆谈起》(当然还有几本小册子也是起名《从……谈起》)。已故的奥赛专家严镇军先生也写过《从正五边形谈起》。这是一道2005年国际数学奥林匹克印度队选拔考试题。