数学
-
从群到李代数冯承天本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等.第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体.第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间.第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理.第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中的应用. 本书起点低,论述详尽且严格,举例丰富,且前后呼应,是一本论述群、群的表示、李群、李代数表示及其应用的可读性较强的读物,谨供广大数学和物理科学的热爱者们阅读、参考. -
康托集的豪斯道夫维数刘培杰数学工作室本书共分3篇,详细介绍了豪斯道夫维数的定义、性质、相关定理,以及各类康托集的豪斯道夫测度,还介绍了希尔宾斯基地毯上的豪斯道夫维数等等.本书适合高等院校的师生及数学爱好者参考阅读。 -
多项式逼近问题刘培杰数学工作室本书首先介绍了一道数学竞赛题的解法,其次详细介绍了最佳逼近多项式、多元函数的三角多项式逼近、在具有基的Banach空间中的最佳逼近问题、变形的L1有理逼近等相关知识,在附录中还介绍了第十一届全国大学生数学竞赛决赛的情况.本书适合高等院校师生和数学爱好者参考阅读。 -
从一道北京大学金秋营数学试题的解法谈起刘培杰数学工作室本书包含20章内容,从一道北京大学金秋营数学试题的解法谈起,详细介绍了帕塞瓦尔等式的相关基础理论,以及帕塞瓦尔等式的应用.本书适合高中师生、大学师生及数学爱好者参考阅读. -
数学分析历年考研真题解析 第六卷陶利群本书精选了130套多所大学研究生考试中数学分析真题,如大连海事大学、电子科技大学、东北大学、东南大学、复旦大学、福州大学等,针对书中的多数试题都给出了解答或提示,只有少数简单题目或不同年份出现的类似及相同题目略去了其答案.本书可作为报考数学专业硕士研究生的考生复习数学分析时的参考用书,也可作为大学数学系新生学习数学分析时的参考用书. -
凸分析刘歆,刘亚锋凸分析的主要研究对象是欧氏空间中的凸集合和凸函数,以锥、次微分和对偶理论为核心, 建立了优化问题的最优性条件,并构建了现代非光滑和变分分析的基础. 本书共分三章:第 1 章主要介绍相关的基本概念和工具,包括欧氏空间、拓展实值函数、函数半连续性、包算子、仿射映射等;第 2 章聚焦于凸集和凸锥以及各自诱导的包算子,主要内容包括凸包、相对拓扑、锥近似、投影、Moreau 分解和分离定理等;第 3 章聚焦于凸函数,主要内容包括凸函数的仿射下界、Moreau 包络、连续性、对偶理论、次微分等. -
三角函数车新发本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。 -
计数几何学与弦论Sheldon Katz 著,邵一陆 王现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。 -
高中数学专题研究杨学枝本书主要是对高中教材中的数学知识的应用和拓展,以及对数学解题方法的研究,内容涉及代数、方程、不等式、平面几何与立体几何、三角、复数、向量、多项式、行列式、解析几何、点量等方面本书适合高中师生及数学爱好者研读。 -
从2022年全国高考数学压轴题的解法谈起刘培杰数学工作室本书从2022年一道高考数学压轴题的解法谈起,引出了数值计算中的帕德逼近。全书共分14章,主要介绍了什么是Padé逼近、经典Padé逼近概述、Padé逼近与Taylor展开的比较、函数值Padé逼近方法及其在积分方程中的应用等内容。通过对本书的学习,读者可以充分理解并掌握有关Padé逼近的问题,并能更好地将其应用到相关的研究理论中。本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读。
