数学
-
函数论与泛函分析初步А. Н. 柯尔莫戈洛夫 C. B. 佛明 著 段虞荣 郑洪深本书是世界著名数学家A. H. 柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析III》)的基础上编写的。它是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与线性算子,测度、可测函数、积分,勒贝格不定积分、微分论,可和函数空间,三角函数傅里叶变换,线性积分方程,线性空间微分学概要以及附录的巴拿赫代数。本书适用于高等学校数学、物理及相关专业的大学生、研究生和教师参考使用,也适用于数学以及相关领域的研究人员。 -
数学建模竞赛优秀论文精选彭蓝婷,黄冠佳暂缺简介... -
非线性微分方程的同伦分析方法廖世俊 著 崔继峰、刘曾、杨小岩求非线性问题的解析近似解最著名的方法是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。 -
代数几何扶磊代数几何是数学中的核心学科,与数学的众多分支相关。本书是代数几何的入门课本,其目标是在假设读者具有最少预备知识的情况下,介绍概形上凝聚层的上同调理论,为读者学习更专业的代数几何做充分准备。书中涵盖了Grothendieck的经典著作《代数几何原理》(EGA)I-III 中的主要内容,并假设读者熟悉Atiyah和Macdonald编写的《交换代数导论》的第1-8章。本书为第二版,除纠正第一版中的错误、改进表述外,作者还新增了练习题。 本书适合高等院校数学及相关专业作为代数几何的教科书使用。 -
数据科学中的数学方法任景莉数据科学的理论基础是数学。《数据科学中的数学方法》共六章。前三章系统介绍了数据科学里广泛使用的线性代数、概率论、微积分以及*优化理论的相关基础知识;后三章简练阐述了网络分析、量子算法、大模型的基本数学原理和一些代表性算法。《数据科学中的数学方法》部分应用案例源自作者的原创性工作,通过发现问题、分析问题、解决问题的逻辑链条,生动展示了数据建模在解决实际问题中的应用路径。 -
工程数学问题求解算法及应用冯江华《工程数学问题求解算法及应用》是一本专注于介绍各类数值计算算法的专著,其主要内容安排如下:*先,介绍各类矩阵的分解算法,比如**的LU分解、QR分解等,并以矩阵分解原理为基础,介绍各类线性方程组的求解方法。其次,介绍求解线性方程组的各类迭代算法,如Jacobi迭代算法、Gauss-Seidel迭代算法等,接着导入非线性方程的求解问题,介绍求解该问题的各类迭代算法,如Newton算法等,进一步介绍求解非线性方程组的Newton算法衍生的各类迭代算法,如拟Newton算法等。再次,介绍各类插值和拟合算法,如三次样条插值、*小二乘拟合等。*后,以Euler算法为基础介绍常微分方程(组)求解算法和偏微分方程求解算法。 -
初识高等数学[俄] Л.С. 庞特里亚金 著,李植苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,介绍坐标法,以平面解析几何为主,还包括一些代数问题,给出复数的几何表述以及多项式的复变函数表述,从而能够证明高等代数基本定理。本书还介绍空间中的笛卡儿坐标和立体解析几何,可供喜欢数学的高中生以及中学和大学的教师参考。 -
微积分学教程Г.М.菲赫金哥尔茨 著,徐献瑜、冷生明、梁文骐 译,郭思旭 校本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一,是一部卓越的数学科学与教育著作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和 师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其 基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级 数与傅里叶变换。本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。本书可供各级各类高等学校的数学分析与高等数学课程选作教学参考书,是数学分析教师极好的案头用书。 -
紊流数学模型研究丁道扬,吴时强在计算技术迅速发展的今天,探求有效数值计算方法预测紊流运动规律,有其重大的理论意义和实用价值。《紊流数学模型研究》系统讲述了通过剖开算子法,用协调或拟协调单元解对流算子的计算方法,对高雷诺数紊流开展DNS计算的基本理论、方法及计算实例。《紊流数学模型研究》共11章,第1~4章分别介绍紊流基本理论、计算方法、典型过跌坎紊流等,第5~11章分别介绍不同情景条件下的紊流计算实例,如二维/三维跌坎紊流DNS计算、三维跌坎紊流LES计算、网格加密计算及二维和三维对比计算分析等。 -
非凸变分不等式姚斯晟,邱栎桦,杨昌波本书以凸分析及弹塑性摩擦接触问题的变分解法为出发点,通过近似次微分等基础概念及性质的介绍,引入非凸分析的理论框架,结合热力学分析与变分理论,建立非凸变分不等式解的存在唯一性分析,进而在塑性形变屈服面非凸的情况下应用非凸变分不等式求解相关弹塑性模型.本书特点是将变分不等式约束集非凸情况下理论求解方法的分析及其在弹塑性摩擦接触问题中的应用相结合,由浅入深地介绍非凸分析理论在非凸变分不等式及力学摩擦接触问题中如何使用与发挥作用,使学习过程结合理论与应用两个层面,较全面地理解理论学习与实际应用间的距离.
