数学
-
格值模糊凸结构与格值模糊代数史福贵本书是作者及其团队多年来部分研究成果的总结。本书给出了模糊代数中的模糊子(半)群度、模糊子环度、模糊理想度、模糊子域度、模糊向量子空间度、模糊子格度和模糊效应子代数度等概念,并建立了它们和模糊凸空间之间的联系。 -
控制论中的奇摄动方法汪志鸣等本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了奇摄动系统的鲁棒H∞分析与控制,并且详细介绍了线性奇摄动系统的动态输出反馈的问题;最后着重介绍了基于边界层函数法的直接展开法,以不同的视角讨论了非标准奇摄动最优控制中具有阶梯型空间对照结构的渐近解。本书由十二章组成,主要内容是作者在过去20年教学科研工作长期积累的基础之上编写而成的,我们的博士生也参与了许多研究、撰写与校对工作。 -
AwesomeMath入学测试题[美]蒂图.安得雷斯库 罗炜 译本书共分为3个部分,第1部分为问题,介绍了2015年至2021年AwesomeMath课程的入学测试题;第2部分给出了所有试题的完整或加强的解答;第3部分为术语表,详细地介绍了本书用到的术语。本书适合准备参加数学竞赛的初高中生及想扩大数学视野的读者参考阅读。 -
变分方法与非线性发展方程丁彦恒等本书讨论变分方法在非线性发展方程理论中的应用.非线性发展方程主要关心局部解、全局解的存在性以及孤立被解的稳定性等问题.利用变分方法我们可以寻找众多的非线性发展方程的稳态解,之后根据对应的守恒律可以得到系统的轨道稳定性和不稳定性。本书主要内容包括最优控制问题中的扩散方程、量子力学问题中的非线性Schr?dinger方程和非线性Dirac方程、经典和无穷维Hamilton系统。通过对这几类发展方程的研究,我们以期建立非线性发展方程的变分理论。 -
离散多智能体系统的协调控制谭冲,李彦江,刘国平《离散多智能体系统的协调控制》结合作者多年来的研究成果,系统阐述具有通信约束的离散多智能体系统一致性与协同控制的理论和方法。主要包括:绪论、无领航同构离散多智能体系统的状态一致性、无领航异构离散多智能体系统的一致性、离散多智能体系统的领导跟随一致性、网络化多智能体系统的分组一致性、具有参考信号的离散异构多智能体系统的输出跟踪控制。 -
有向几何学喻德生本书是《有向几何学》系列成果之五.在《平面有向几何学》和《有向几何学》系列研究的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向面积法和有向面积定值法,对平面2n+1点集、2n+1多角形(多边形)重心线的有关问题进行深人、系统的研究,得到一系列的有关平面2n+1点集、2n+1多角形(多边形)重心线的有向度量定理,主要包括2n+1点集、2n+1多角形(多边形)重心线三角形有向面积的定值定理;点到2n+1点集、2n+1多角形(多边形)重心线有向距离的定值定理;共点2n+1点集重心线有向距离定理;2n+1点集、2n+1多角形(多边形)重心线的共点定理、定比分点定理;2n+1点集各点、2n+1多角形(多边形)各顶点到重心线的有向距离公式等,以及以上定理和公式的应用,从而揭示这些定理之间、这些定理与经典数学问题、数学定理之间的联系,较系统、深人地阐述了平面2n+1点集、2n+1多角形(多边形)重心线有向度量的基本理论、基本思想和基本方法.它对开拓数学的研究领域,揭示事物之间本质的联系,探索数学研究的新思想、新方法具有重要的理论意义;对丰富几何学各学科以及相关数学学科的教学内容,促进大、中学数学教学内容改革的发展具有重要的现实意义;此外,有向几何学的研究成果和研究方法,对数学定理的机械化证明和工程有关学科也具有重要的应用和参考价值. -
数学分析讲义董昭,郑伟英,燕敦验《数学分析讲义》(上、下册)是作者在中国科学院大学授课期间编写的,讲义内容主要参考了华东师范大学数学系编写的《数学分析》,以及国内外一些优秀的教材,并在此基础上作了一些补充。讲义注重分析的几何直观性、理论的严谨和系统性、应用的深入性,以及与后续学科的衔接性。 -
从一道北大金秋营数学试题的解法谈起刘培杰数学工作室本书从一道北京大学金秋营数学试题的解法谈起,详细介绍了伽罗瓦理论的相关知识.全书共分为十一章,主要介绍了伽罗瓦小传、群是什么、群的重要性质、一个方程式的群、伽罗瓦的鉴定、用直尺与圆规的作图、伽罗瓦的鉴定为什么是对的、可计算域和伽罗瓦理论等内容.本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读. -
唐吉诃德+西西弗斯 兼收并蓄集刘培杰数学工作室 著本丛书为您介绍数百种数学图书,并奉上名家及编辑为每本图书所作的序、跋等。本丛书旨在为读者开阔视野,在万千数学图书中精准找到所求,其中不乏精品书、畅销书。本书为其中的《兼收并蓄集》。本丛书适合数学爱好者参考阅读。 -
周期系统和随机系统的分支理论任景莉,唐点点分支现象广泛存在于生物学、信息学、物理学、经济学及各种工程问题中.结合不同实际背景的系统, 分支理论也需要不断完善. 本书在常微分方程自治系统的分支理论基础上, 围绕周期系统和随机系统, 对这两类系统的分支理论进行延拓. 内容包括自治系统、周期扰动系统、随机扰动系统的分支研究, 以及在生物、信息、物理、经济等领域的应用. 本书给出基本数学概念、相关定理和非线性分析方法, 并对具体模型进行理论分析和使用适当的数学计算软件进行数值模拟, 步骤详细清楚, 便于不同领域的读者阅读.
