数学
-
数据科学中的拟插值方法高文武等本书主要内容包括函数空间及其生成子的定义,伯恩斯坦拟插值的定义及高精度迭代伯恩斯坦拟插值,多项式B-样条拟插值及广义B-样条拟插值,几类经典Multiquadric样条拟插值构造理论、保形性、高阶导数的逼近阶及稳定性,Multiquadric三角样条拟插值构造理论、对高阶导数的逼近阶及稳定性、广义保形性,拟插值的构造理论及性质,随机拟插值的构造理论等。最后,本书还讨论了拟插值在高精度数值微分、无网格微分方程数值解、图像边缘检测、非参数核密度估计等领域的应用,为数据科学、函数逼近等领域提供新方法、新理论。 -
组合数学及应用刘关俊《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。 -
格值模糊凸结构与格值模糊代数史福贵本书是作者及其团队多年来部分研究成果的总结。本书给出了模糊代数中的模糊子(半)群度、模糊子环度、模糊理想度、模糊子域度、模糊向量子空间度、模糊子格度和模糊效应子代数度等概念,并建立了它们和模糊凸空间之间的联系。 -
基于Bayesian统计推断的粒子滤波技术及应用翟永智 著.本书针对大数据决策理论中涉及的安全可靠风险问题,以及可靠性与精确性的制约折中优化的问题,将研究的重点主要集中于基于Bayesian统计推断的粒子滤波算法的研究和应用,在论述粒子滤波算法的同时,主要融入了作者新的研究思想,即点估计观测值 先验概率,同时将多尺度的概念融入粒子滤波中,形成了具有多尺度粒子滤波的算法,利用不同粗细尺度对动态系统状态空间中的一条马尔可夫链进行交替耦合采样,借助于传递和更新状态信息及参数信息来搜索状态和参数的最大联合后验分布似然函数。细尺度的重要采样能保持精度,粗尺度的重要采样能提高运算效率,粗细尺度交替耦合采样则能有效抑制粒子的退化现象。本书为深度学习人工智能并深入研究奠定坚实的理论基础。本书适合对大数据、统计信号处理、数字孪生系统故障传播根因诊断以及人工智能研究领域感兴趣的高年级本科生、硕士研究生、博士研究生及从事相关领域研究的科研人员参考阅读。 -
可拓学杨春燕,蔡文,汤龙中国原创学科可拓学,用形式化的模型,研究事物拓展的可能性和开拓创新的规律与方法,并用于创新和处理矛盾问题. 本书系统地阐述了可拓学的基本理论??可拓论、基本方法??可拓创新方法及其在各领域的应用??可拓工程,并给出可拓工程方法的应用案例. 本书理论与应用相结合,分析透彻,可操作性强. 读者可以从中学会如何创新、如何化不相容为相容、如何化对立为共存. 为方便不同知识背景和不同层次的读者学习,各部分内容都配备了通俗易懂的案例. -
广义凸性及其应用杨新民,戎卫东,唐莉萍函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论. 本书系统地介绍数值函数各种类型的广义凸性以及它们在运筹学和经济学中的一些应用. 主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与最优性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性. -
卡西尼卵形线刘培杰数学工作室本书主要介绍了什么是卵形线、卵形线的性质及其应用.全书共分7章,内容分别为从一道期中考试试题到鸡蛋的形状,卵圆及其应用,正则卵形线的一些性质,椭圆积分与椭圆函数,椭圆积分的一个应用,盖尔圆定理与卡西尼卵形线,具有全局中心的平面多项式哈密尔顿系统与卵形线.本书适合高等学校数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读. -
数学分析讲义董昭,郑伟英,燕敦验《数学分析讲义》(上、下册)是作者在中国科学院大学授课期间编写的,讲义内容主要参考了华东师范大学数学系编写的《数学分析》,以及国内外一些优秀的教材,并在此基础上作了一些补充。讲义注重分析的几何直观性、理论的严谨和系统性、应用的深入性,以及与后续学科的衔接性。 -
高等数学竞赛题解析教程陈仲本书依据全国大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照考研数学考试大纲编写而成,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自全国大学生数学竞赛试题(非数学专业组),全国硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年全国硕士研究生入学考试试题中也挑选了一些“好题”,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难度的创新题,本书逐条解析,深入分析,并总结解题方法与技巧。本书可供准备高等数学竞赛的老师和学生作为培优教程,也可供各类高等学校的大学生作为学习高等数学和考研的参考书,特别有益于成绩优秀的大学生提高高等数学水平。 -
周期系统和随机系统的分支理论任景莉,唐点点分支现象广泛存在于生物学、信息学、物理学、经济学及各种工程问题中.结合不同实际背景的系统, 分支理论也需要不断完善. 本书在常微分方程自治系统的分支理论基础上, 围绕周期系统和随机系统, 对这两类系统的分支理论进行延拓. 内容包括自治系统、周期扰动系统、随机扰动系统的分支研究, 以及在生物、信息、物理、经济等领域的应用. 本书给出基本数学概念、相关定理和非线性分析方法, 并对具体模型进行理论分析和使用适当的数学计算软件进行数值模拟, 步骤详细清楚, 便于不同领域的读者阅读.
