数学
-
多变量基本超几何级数理论张之正多变量基本超几何级数,由于它的产生具有深刻的根系统的代数表示论背景,亦称伴随根系统基本超几何级数。本书是作者结合自己的长期研究,系统介绍多变量基本超几何级数研究领域的主要理论、方法及其应用的著作。全书共十二章,内容包括单变量基本超几何级数的基本理论及经典结果、多变量基本超几何级数的引入与分类、求和与变换公式、U(n+1)级数的基本定理及其应用、算子算子恒等式及其应用、多变量Bailey变换及其应用、多维矩阵反演、行列式计算方法及其应用、U(n+1)AAB Bailey格及其应用、多变量WP-Bailey对链及其应用、椭圆超几何级数初步、多重级数的收敛性等。本书尽可能多地容纳多变量基本超几何级数的众多繁杂的公式,尽量对读者起到查阅已有结果的手册作用。 -
沙可夫斯基定理刘培杰数学工作室 著本书从一道韩国奥林匹克数学竞赛试题的解法谈起,详细介绍了有关沙可夫斯基定理的相关知识及内容,如沙可夫斯基定理的证明,沙可夫斯基定理的推广,周期轨,连续自映射,周期轨的连续自映射,沙可夫斯基定理的应用等内容。通过对本书的学习,读者可以对沙可夫斯基定理及相关内容有一定的了解并能更好地将其应用到相关的研究理论中。本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读。 -
唐吉诃德+西西弗斯.井蛙语海集刘培杰数学工作室本丛书为您介绍了数百种数学图书,并奉上名家及编辑为每本图书所作的序、跋等。本丛书旨在为读者开阔视野,在万千数学图书中找到所求,其中不乏精品书、书。本书为其中的《井蛙语海集》。本丛书适合数学爱好者参考阅读。 -
AwesomeMath入学测试题[美]蒂图.安得雷斯库 罗炜 译本书共分为3个部分,第1部分为问题,介绍了2015年至2021年AwesomeMath课程的入学测试题;第2部分给出了所有试题的完整或加强的解答;第3部分为术语表,详细地介绍了本书用到的术语。本书适合准备参加数学竞赛的初高中生及想扩大数学视野的读者参考阅读。 -
广义微分几何讲义[法]帕特里克·伊格莱西亚斯 - 泽穆尔(Patrick Iglesias-Zemmour)《广义微分几何讲义》是为对微分几何感兴趣的学生准备的,尤其是那些在经典理论未涵盖的几何情形。它是已出版的《广义微分几何》(Diffeology)的配套教学笔记,一半源自作者在汕头大学访问时的专题讲座,一半则是作者在同各方学者多年研究探讨后的研究成果、思考、练习等作者希望与读者分享的笔记。全书以时间线为轴,讲述Diffeology领域的起源和发展,编排合理,每章篇头都有总述、定义、理论等讲解,辅以推论过程,由简到难,自然过渡到结论,很符合授课讲义的风格,其后还有习题、问题、思考探讨等用以巩固讲义知识,并启发思考,对研究微分几何或数学物理的学生与研究人员非常有用。 -
组合数学及应用刘关俊《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。 -
分数阶积分和导数(俄罗斯)史蒂芬·G.萨姆科(Stefan G.Samko)等《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。 -
数据科学中的拟插值方法高文武等本书主要内容包括函数空间及其生成子的定义,伯恩斯坦拟插值的定义及高精度迭代伯恩斯坦拟插值,多项式B-样条拟插值及广义B-样条拟插值,几类经典Multiquadric样条拟插值构造理论、保形性、高阶导数的逼近阶及稳定性,Multiquadric三角样条拟插值构造理论、对高阶导数的逼近阶及稳定性、广义保形性,拟插值的构造理论及性质,随机拟插值的构造理论等。最后,本书还讨论了拟插值在高精度数值微分、无网格微分方程数值解、图像边缘检测、非参数核密度估计等领域的应用,为数据科学、函数逼近等领域提供新方法、新理论。 -
改进傅里叶方法及其应用张庆华本书引进的改进傅里叶级数,是在闭区间上可以一致收敛地逼近任意形式的拟光滑函数的级数。本书给出了:变系数线性常微分方程的通用求解方法(这里变系数可以是连续函数,也可以是间断的函数);对具有各阶奇异点的奇异性方程(正则或非正则)给出了求解的原则;对几种常见的奇异常微分方程给出了详尽的求解过程和计算算例;完满地求解了两个典型的海洋动力学问题(海洋内波与地形的相互作用,风场作用下水气界面的稳定性分析)。 -
分圆多项式刘培杰数学工作室 编本书共分11章,主要介绍了分圆多项式与西格蒙德定理、分圆多项式及其系数、分圆多项式的Schinzel等式、F2上一类多项式不可约因子个数的奇偶性、分圆多项式与逆分圆多项式、分圆单位系的独立性、拟分圆多项式、分圆域与高斯和、代数数论中的现代分圆域理论、基于Z2pm上二阶广义割圆的量子可同步码。本书适合高等学校数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读。
