数学
-
数理逻辑和算法理论袁相碗本书以数理逻辑和算法理论的进化为主线,并结合计算机与人工智能学科的发展为其主要特色进行论述。本书共分8章,主要内容包括算法化和公理化矛盾统一的数学史观,逻辑的数学化,集合论公理化,数学基础问题三大派之争,数理逻辑主要内容的形成,丘奇-图灵论题的创立和计算机的出现,计算机科学与算法,人工智能与算法。其中后两章介绍了计算机科学、人工智能与算法的关系。本书适合作为高等院校人工智能、计算机科学、数学、哲学等本科专业学生及研究生对应课程的学习教材,也适合作为从事计算机科学和人工智能应用与开发的科技人员的参考用书。 -
奇思妙想彰显数学魅力方志平暂缺简介... -
高维时间序列序列相关性和条件异方差检验周泽人本书主要讨论高维时间序列的白噪声检验方法和条件异方差检验方法。由于高维时间序列的一个特点是其内部结构往往十分复杂,构造的白噪声检验和条件异方差检验的统计量的渐近分布形式通常十分复杂,同时包含一些难以直接估计的参数,这就导致其临界值难以获得。针对上述问题的一个解决方法是构造适当的bootstrap方法获得统计量的临界值,bootstrap方法的优点是可以避免对渐近分布中的复杂参数的估计,直接获得统计量的渐近分布。本书分为三章。 章介绍一元和多元时间序列的白噪声检验方法和条件异方差检验方法,同时介绍一些用于时间序列上的bootstrap方法;第二章介绍高维时间序列的白噪声检验方法;第三章介绍高维时间序列的条件异方差检验方法。 -
概率论与数理统计王雪茹\"本书是结合沈阳航空航天大学经济管理类学生的学习基础和教学特点编写而成的,全书以通俗易懂的语言全面系统地介绍了概率论与数理统计的基本知识,内容包括随机事件及其概率、随机变量的分布与数 字特征、多维随机变量、数理统计的基本概念、参数估计与假设检验、回归分析与方差分析,每章配有习题、课程文化,书末附有软件体验和各章习题的参考答案,以及考研真题汇总。本书理论系统,举例丰富,讲解透彻,难度适宜,适合作为普通高等院校本科经济管理类有关专业的“概率论与数理统计”课程的教材使用,也可供部分专科院校选用为同类课程教材,还可作为相关专业人员和广大教师的参考用书。\" -
对称问题[美]亚历山大·G.拉姆(Alexander,G.Ramm)《对称问题:纳维尔-斯托克斯问题》由哈尔滨工业大学刘培杰物理工作室从国外进引,由于之前18年我们一直在做数学工作室,考虑到数理不分家,且数学出版市场已呈饱和态势,且已有内卷化倾向产生,所以这是一次跨界之旅,本书中文书名可译为《对称问题:纳维尔一斯托克斯问题》。《对称问题:纳维尔-斯托克斯问题》的作者为:亚历山大·G.拉姆(AlexanderG.Ramm),他生于俄罗斯,1979年移民美国,现在是美国公民,他是数学教授,对分析、散射理论、反问题、理论物理、工程、信号估计、层析成像、理论数值分析和应用数学有广泛的兴趣,他著有690篇研究论文、16部专著并编辑了3本书,他在世界各地的许多大学做过演讲,并指导过11名博士生,他是以色列和乌克兰的富布赖特研究教授,墨西哥和埃及的杰出客座教授,墨卡托教授,第7届PACOM大会的发言人,他赢得了Khwarizmi国际奖,还获得了其他一些荣誉。《对称问题:纳维尔-斯托克斯问题》属流体力学范畴,对流体运动所遵循的运动规律,18,19世纪期间科学界有深入的研究,流体根据其物理性质分为粘性与无粘两类,什么是流体的粘性呢?流体虽然不承受切应力,只承受法应力,但对切向变形并不是没有抵抗的,这种抵抗就是内摩擦,流体的内摩擦称为粘性,流体在静止或匀速运动时无相对滑动,这时粘性表现不出来,无粘气体亦称理想气体,对无粘流体运动规律的精确数学描述有欧拉(Euler)方程;粘性流体运动规律的精确数学描述则有本书书名中所提到的纳维尔-斯托克斯(Navier-Stokes)方程,这两个方程是非常基本的,得到了非常广泛的应用。 -
特征值问题的下谱界与多网格离散张宇本书为学术著作。特征值问题是工程数学和理论物理学的中心问题之一。本书主要从特征值的下谱界和多网格离散两个重要角度探索和发展特征值问题的有限元求解,主要阐述了变系数二阶椭圆及Stokes算子的渐近下谱界、Steklov特征值问题的渐近下谱界、流体力学中特征值问题的可保证下谱界、重调和特征值问题Ciarlet-Raviart混合法的二网格离散、反散射中Steklov特征值问题的多网格校正、反散射中Steklov特征值问题的自适应算法等内容。本书将所得理论结果用于物理科学及应用工程等领域中的特征值问题,以对现有关于特征值问题下谱界及多网格离散理论作补充,在一定程度上可推动现有理论的发展和完善。 -
凸性史树中凸集主要介绍了凸的定义,凸集承托定理的解析证明,数理经济学上的应用及对一般情形的推广;凸函数一章主要介绍了凸函数的定义,凸性不等式,凸函数的导数性质,次微分和共轭函数,凸分析的两条基本定理凸规划等。 -
郭柏灵论文集 第16卷郭柏灵郭柏灵论文集第十六卷收集的是郭柏灵先生发表于2018年度的主要科研论文,涉及的方程范围宽广,有确定性偏微分方程和随机偏微分方程,研究的问题包括适定性、爆破性、渐近性、孤立波等等。这些论文具有很高的学术价值,对偏微分方程、数学物理、非线性分析、计算数学等方向的科研工作者和研究生,是极好地参考著作。 -
临界非线性色散方程苗长兴,徐桂香,郑继强本书主旨是以能量临界Schrodinger方程、聚焦非线性Klein-Gordon方程为范例,向读者介绍近年来非线性色散(波)方程研究中派生的Bourgain能量归纳法、陶哲轩I-团队的相互作用Morawetz估计及其局部化技术、Kenig-Merle在色散框架下发展的变分原理与刚性方法。主要涉及非线性色散方程的物理背景、Fourier分析基础及Strichartz估计、变分法与椭圆理论:基态解及其变分刻画、集中紧致原理与轮廓分解、非聚焦能量临界Schrodinger方程的整体适定性与散射理论、聚焦能量临界Schrodinger方程及非线性Klein-Gordon方程的散射理论。与此同时,以评述的形式给出其他非线性色散方程的研究进展及相关参考文献。希望通过本书使青年学者掌握如何用现代分析,特别是调和分析来研究非线性色散方程,尽快进入该研究领域的前沿。 -
数学中的矛盾转换法徐利治 郑毓信《数学中的矛盾转换法》通过对各类例子的分析讲述,由浅入深地向读者介绍数学中的“关系映射反演方法”(简称RMI方法)。因为这种方法的食指就是“矛盾转换法”,也就是把较困难的问题转化为较易处理的问题以求得解决的方法,所以这是一种非常普遍的思想方法,其应用远不限于数学领域。
