数学
-
生物数学徐克学本书为中国科学院研究生教学丛书之一。《BR》生物数学是20世纪生物学飞速发展中产生的一门新兴边缘学科。生物数学的基本理论与方法对当代生物学的发展产生重大影响,并在生物学有关领域得到广泛应用。本书对生物数学的发展历史、基本原理、数学方法及其在生物学领域中的应用作了比较系统的介绍。书中部分内容出自著者的科研和教学成果,如演化集合论、二元数据的数据处理和计算方法、生物信息论中的离散论、马尔柯夫链中的带输入马尔柯夫状态序列以及系统与控制论中的部分理论。本书内容适应了当代生物学研究工作对新理论知识和新技术方法的需要,有一定的深度和广度。
-
分数阶傅里叶变换及其应用陶然、马金铭、邓兵、王越本书主要介绍分数阶傅里叶变换的发展历程、定义及性质,基于分数阶傅里叶变换的分数阶算子和分数阶变换,分数阶傅里叶域滤波器、以及线性调频信号的检测和参数估计问题;分数阶傅里叶域离散信号处理理论,包括分数阶傅里叶变换的离散算法、分数阶傅里叶域的 采样以及多抽样率滤波器组理论;分数阶傅里叶域随机信号处理理论;分数阶傅里叶变换在阵列信号处理、雷达、通信和图像处理中的应用;分数阶傅里叶变换的广义形式——线性正则变换。 本书可以作为相关研究人员的工具书和感兴趣读者的入门书籍,同时也是慕课“分数域信号与信息处理及其应用”的配套教材。
-
高等数理统计教程韦博成 著本书全面系统地介绍了数理统计的原理、方法及其应用。全书共分八章,涵盖了数理统计的主要内容,其中包括:常见的统计分布;充分统计量和信息函数;点估计的基本理论和方法;假设检验的理论、方法及其应用;区间估计及其应用;Bayes统计推断的基本概念和方法。掌握本书内容即可比较顺利地理解其他学科中用到的统计方法。本书可作为高等学校统计学类专业高年级及研究生教材,以及经济金融、工程技术、生物医学等专业研究生的教学参考书,也可供相关专业的教师和科技人员参考。
-
俄罗斯数学经典Vladimir A.Zoric 著内容简介 《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。 《卓里奇数学分析教程》共两卷,第2卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、Rn中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。 《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
-
王戌堂文集王戌堂王戍堂教授一直恪守“做人要透明,做学问要透明”“做学问首先是做人”“科学就是奉献”“对待科学事业,不仅要有爱心,还要有忠心”的为人治学理念,传承科学精神的使命感和提携后人的责任感促使他一直屹立在教书育人的前沿。他把学术研究当作**乐趣,甚至将其视为超过自己的生命。他一生甘于坐冷板凳,严谨治学、潜心科研,执着于追求科学真理。他一生淡泊名利、甘为奉献,从而立之年至耄耋之际,大半个世纪如一日,甘为红烛、不辍耕耘。他退休之后仍然坚持为学生义务开设数学公益课堂十余载,“莫道桑榆晚,为霞尚满天”。本书收录了王戍堂文集,不仅有助于挖掘历史文化资源、把握学术延展脉动、推动文明交流互动,为西北大学综合改革和“双一流”建设提供强大的精神动力,也必将为推动整个高等教育事业发展提供有益借鉴。
-
俄罗斯数学经典Vladimir A.Zoric 著内容简介 《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。 《卓里奇数学分析教程》共两卷,第1卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。 《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
-
数学分析历年考研真题解析陶利群本书精选了128套多所大学研究生考试中数学分析历年考试真题,书中大多数试题都给出了解答或提示,只有少数简单题目或不同年份出现的类似及相同题目略去了其答案.本书可作为报考数学专业硕士研究生复习数学分析的参考书,也可作为大学数学系新生学习数学分析的参考书.
-
大哉言数刘钝 著本书介乎通史与专题之间,首先,对中国古代数学这一延绵近两千年的学术传统作了简要综述,涉及名家名著、数制与算具、数学在中国社会中的功效等。其次,对中国古代的算术、代数和几何三大领域中共32个专题作了详细讨论,重点建立在分离系数法基础上的中国古算的机械化特征与模型化方法在代数与几何中的示范作用。
-
希尔伯特空间分裂可行性问题王丰辉 著《希尔伯特空间分裂可行性问题》主要研究无穷维希尔伯特空间框架下的分裂可行性问题。《希尔伯特空间分裂可行性问题》以非扩张映射、单调映射、凸分析等非线性泛函分析理论为主要研究工具,系统介绍了分裂可行性问题解的存在性及其逼近方法的*新研究结果,其主要内容由作者长期在该领域的研究成果积累而成。
-
矩阵半张量积讲义 卷三程代展 等 著矩阵半张量积是近二十年发展起来的一种新的矩阵理论。经典矩阵理论的*大弱点是其维数局限,这极大限制了矩阵方法的应用。矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为穿越维数的矩阵理论。《矩阵半张量积讲义》的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍。计划出版五卷。卷一:矩阵半张量的基本理论与算法;卷二:逻辑动态系统的分析与控制;卷三:有限博弈的矩阵半张量积方法;卷四:有限与泛维动态系统;卷五:工程及其他系统。《矩阵半张量积讲义.卷三,有限博弈的矩阵半张量积方法》的目的是对这个快速发展的学科分支做一个阶段性的小结,以期对其进一步发展及应用提供一个规范化的基础。 《矩阵半张量积讲义.卷三,有限博弈的矩阵半张量积方法》是《矩阵半张量积讲义》的第三卷,介绍有限博弈的矩阵半张量积方法。主要内容包括:网络演化博弈的建模与控制;势博弈的检验与应用;有限博弈的向量空间结构与正交分解;博弈的优化与策略学习方法;若干合作博弈的特征函数与分配的矩阵表达等。基于可读性的要求,在介绍矩阵半张量积有限博弈研究中的新进展的同时,也对博弈论的相关基础知识做了自足自洽的介绍。《矩阵半张量积讲义.卷三,有限博弈的矩阵半张量积方法》所需要的预备知识仅为工科大学本科的数学知识,包括线性代数、微积分、常微分方程、初等概率论。相关的线性系统理论及点集拓扑、抽象代数、微分几何等的初步概念在卷一附录中已给出。不感兴趣的读者亦可略过相关部分,这些不会影响对《矩阵半张量积讲义.卷三,有限博弈的矩阵半张量积方法》基本内容的理解。