数学
-
复变函数陈孝国暂缺简介...
-
微积分溯源[美] 戴维·M. 布雷苏(David M. Bressoud)本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
-
数学与创造[日]广中平?v本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平?v先生的思想文集。书中以广中平?v先生与“奇点解消问题”的故事为线索,讲述了广中平?v在挑战“奇点消解问题”的过程中,对“数学学习”“数学教育”以及“创造性思维”的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平?v先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平?v先生数学思想以及创造性思维的佳作。
-
真希望几何可以这样学星田直彦《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为“基础篇”和“提高篇”,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为提高篇,分为三角形与四边形、相似、圆、勾股定理等四个章节。书中详细地证明了常见的几何定理,并指导读者通过这些定理掌握高效的解题方法,培养正确的几何思维。本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
-
真希望几何可以这样学星田直彦《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为“基础篇”和“提高篇”,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
-
抽象代数基础教程[美] 约翰·弗雷利 著◎内容简介 本书是一部深入介绍抽象代数的入门书籍,被众多读者奉为经典。本书旨在让读者尽可能多地了解群、环和域理论的相关知识,尤其强调对代数结构本质的理解。为了便于学习,全书分成了很多的小章节,本书特色之一是基础部分内容详实,讲解充分,给读者讲解每个定义、定理的来龙去脉,为读者打下扎实的基础,对于读者进一步学习更深的代数大有助益。为了满足更多读者的需求,本书还包含了很多有关拓扑中的同调群和同调群的计算以加深对因子群的理解。作者的风格是以一种自然易懂的方式来教授内容,理论阐述清晰,条理分明,且大都以例子和练习的形式,便于直观了解。书后附有不少习题,有助于加深学生对内容的理解。读者可以扫描世图版全书最后一页上的二维码,加群获取本书完整的习题解答。
-
俄罗斯数学经典Vladimir A.Zoric 著内容简介 《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。 《卓里奇数学分析教程》共两卷,第2卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、Rn中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。 《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
-
俄罗斯数学经典Vladimir A.Zoric 著内容简介 《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。 《卓里奇数学分析教程》共两卷,第1卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。 《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
-
柯西-施瓦茨大师课J. Michael Steele 著这本以问题为导向的生动的教科书,旨在指导读者掌握基本的数学不等式及其应用。作者从柯西-施瓦茨不等式讲起,向读者展示一系列与不等式有关的引人入胜的问题,并以乔治?波利亚的风格来指导读者求解它们,在讲授基本概念的同时,提升解决问题的技巧。这些问题的形式优美,内容出人意料。通过研究它们,读者可以系统学习如下的内容:平方的几何、凸性、幂平均的阶梯、控制、舒尔凸、指数和、赫尔德不等式、希尔伯特不等式和哈代不等式。 本书适合数学、理论计算机科学、统计学、工程学和经济学的高年级本科生和研究生阅读,也可作为分析学、概率论及组合学课程的补充材料。
-
笛卡尔几何(法)勒内·笛卡尔 著《笛卡尔几何》的问世,被誉为数学史上的伟大转折。笛卡尔对数学的最重要贡献,正是他在《笛卡尔几何》中所创立的解析几何。他的这一成就,为微积分的创立奠定了基础,而微积分,又是现代数学产生和发展的重要基石。 《笛卡尔几何》被后世数学家和数学史家视作解析几何的起点。该书共分三卷:第一卷讲解尺规作图;第二卷讨论曲线的性质;第三卷借立体和“超立体”作图以探讨方程的根的性质。 笛卡尔力图建立一种“普遍”的数学,即把任一数学问题转化为代数问题,继而把任一代数问题归结为求解一个方程式,这便是“解析几何”,或称作“坐标几何”。而平面直角坐标的建立,正是解析几何得以创立的关键。