数学
-
折纸中的几何练习[印]T.桑达拉.罗 著通过折纸活动,分析留在纸张上的折痕,我们能够揭示出大量几何对象的性质,如轴对称、中心对称、全等、相似形等.折纸过程还能够体现出许多几何概念和规律.本书通过折纸活动介绍了多边形、级数、圆锥曲线、混合曲线等相关知识,适合中小学师生、大学师生及数学爱好者参考阅读.
-
同伦方法纵横谈王则柯 著从力学、物理学、天文学,直到化学、生物学、经济学与工程技术,无不用到数学……但提起数学,不少人仍觉得头痛,难以入门,甚至望而生畏。我以为要克服这个鸿沟还是有可能的……如果知道讨论对象的具体背景,则有可能掌握其实质……若停留在初等数学水平上,哪怕做了很多难题,似亦不会有助于对近代数学的了解。这就促使我们设想出一套“走向数学”小丛书,其中每本小册子尽量用深入浅出的语言来讲述数学的某一问题或方面,使工程技术人员、非数学专业的大学生,甚至具有中学数学水平的人,亦能懂得书中全部或部分含义与内容。这对提高我国人民的数学修养与水平,可能会起些作用。
-
从阿基米德三角形谈起苏化明阿基米德定理是一个古老且著名的数学问题。本书将这个涉及抛物线弓形与阿基米德三角形之间的面积关系问题类比到双曲线、椭圆、幂函数等曲线,得到了相应的关于这些曲线的几何不等式,本书还将抛物线中的阿基米德三角形三边之间的斜率关系类比到某些初等函数曲线,也得到了相应的不等式。本书可供大中师生及数学爱好者参考阅读。
-
数学模型选谈华罗庚,王元 著从力学、物理学、天文学,直到化学、生物学、经济学与工程技术,无不用到数学……但提起数学,不少人仍觉得头痛,难以入门,甚至望而生畏。我以为要克服这个鸿沟还是有可能的……如果知道讨论对象的具体背景,则有可能掌握其实质……若停留在初等数学水平上,哪怕做了很多难题,似亦不会有助于对近代数学的了解。这就促使我们设想出一套“走向数学”小丛书,其中每本小册子尽量用深入浅出的语言来讲述数学的某一问题或方面,使工程技术人员、非数学专业的大学生,甚至具有中学数学水平的人,亦能懂得书中全部或部分含义与内容。这对提高我国人民的数学修养与水平,可能会起些作用。
-
马先生谈算学刘薰宇本书是著名数学教育家刘薰宇的数学科普读物,用图解的方法帮你轻松解决常见的四则运算。本书以“马先生”的口吻对一些算数问题进行深入浅出地讲解,收集了100多道题目详加解析。 书中虽然提供了众多问题的详细解法,但正如作者所言,本书的主旨并非讲述死板的算法,而是用心介绍思考算学问题的途径,帮助读者理解算学的基本原理进而灵活解决现实问题。
-
扭曲、平铺与镶嵌[美]罗伯特.J.朗《扭曲、平铺与镶嵌:几何折纸中的数学方法(英文)》就是这样一部由一位美国数学家和物理学家所著的英文版的用数学研究折纸艺术的学术著作,中文书名或可译为《扭曲、平铺与镶嵌:几何折纸中的数学方法》。该书的作者为罗伯特·J.朗,美国人,全职折纸艺术家和顾问。五十多年来罗伯特·J.朗一直是折纸的狂热爱好者,现在被公认为领先的折纸艺术大师之一。他以细节和现实主义的设计著称,他的作品包括一些有史以来复杂的折纸设计,将西方数学折纸设计学派的各个方面与东方对线条和形式的强调相结合,产生了独特、优雅且很难折叠的设计,他的作品曾在纽约(现代艺术博物馆)、巴黎(罗浮宫卡鲁塞尔厅)、塞勒姆(皮博迪·埃塞克斯博物馆)、圣地亚哥(世界民俗艺术博物馆)和日本加贺(日本折纸博物馆)的展览中展出。他是计算折纸技术的先驱之一,并发表了大量有关折纸理论和数学之间关系的文章。朗博士出生在俄亥俄州,在佐治亚州的亚特兰大长大,目前为全职折纸艺术家和顾问,他曾在担任物理学家、工程师和研发经理期间,单独撰写或与人合著了80多种科技出版物,并获得了50项关于半导体激光器、光学和集成光电子的专利。2007-2010年,他被选为美国光学学会(Optical Society of America)的会员,并担任《IEEE量子电子学》杂志的主编,在将主要关注点转向折纸之后,他单独撰写或与人合著了许多关于折叠数学和技术应用中折叠设计技术的文章。2009年,由于他的折纸作品,他获得了加利福尼亚理工学院的杰出校友奖,2013年他被选为美国数学学会成员。
-
现代几何学 方法和应用 第1卷[俄]鲍里斯-杜布罗文,[俄]阿纳托利-福缅科,[俄]谢尔盖-诺维科夫◎内容简介本书是莫斯科大学数学力学系经典教材《现代几何学——方法和应用》三卷本的第1卷。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的佳作。整套书内容包括张量分析、曲线和曲面几何、一维和高维变分法(第1卷),微分流形的拓扑和几何(第2卷),以及同调与上同调理论(第3卷)。本书可用作数学和理论物理专业高年级和研究生的教学用书,对从事几何和拓扑研究的工作者也极具参考价值。
-
现代几何学 方法和应用 第2卷[俄]鲍里斯-杜布罗文,[俄]阿纳托利-福缅科,[俄]谢尔盖-诺维科夫◎内容简介本书是莫斯科大学数学力学系经典教材《现代几何学——方法和应用》三卷本的第2卷。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的佳作。整套书内容包括张量分析、曲线和曲面几何、一维和高维变分法(第1卷),微分流形的拓扑和几何(第2卷),以及同调与上同调理论(第3卷)。本书可用作数学和理论物理专业高年级和研究生的教学用书,对从事几何和拓扑研究的工作者也极具参考价值。
-
支持向量机[德] 英戈·斯坦沃特(Ingo Steinwart) 著本书旨在解释使支持向量机(SVMs)成为各种应用的成功建模和预测工具的原理。书中通过展示支持向量机的基本概念,以及最新发展和当前的研究问题来实现这一目标。本书分析了支持向量机成功的至少三个原因:它们在只有少量自由参数的情况下很好地学习的能力,它们对几种类型的模型违反和异常值的鲁棒性,最后是它们的计算效率与其他几种方法进行的比较。目前有很多研究小组正在致力于支持向量机和相关的基于内核的方法。虽然在这些群体之间有许多互动,但本书作者团队认为各小组之间还可以有更多更有成效的互动,本书亦有助于刺激进一步的研究。本书将许多零散的期刊文献或仍在审查中的文献集中起来,更有助于读者学习和参考。
-
模式识别的马尔可夫模型[德] 格诺特·芬克 著本书为修订和扩展的新版本,新版里包括更为详细的EM算法处理、有效的近似维特比训练程序描述,和基于n-最佳搜索的困惑测度和多通解码覆盖的理论推导。为了支持对马尔可夫模型理论基础的讨论,还特别强调了实际算法的解决方案。具体来说,本书的特点如下:介绍了马尔可夫模型的形式化框架;涵盖了概率量的鲁棒处理;提出了具体应用领域隐马尔可夫模型的配置方法;描述了高效处理马尔可夫模型的重要方法,以及模型对不同任务的适应性;研究了在复杂解空间中由马尔可夫链和隐马尔可夫模型联合应用而产生的搜索算法;回顾了马尔可夫模型的主要应用等。