数学
-
分析学教程 第3卷 测度与积分理论 复变量的复值函数[英]尼尔斯.雅各布本书是分析学课程著作的第三卷,涵盖了每个数学家都必须要研究的两个主题,讨论了勒贝格的积分理论和实变量的实值函数理论中的第一个结果,介绍了一个复变量的复值函数理论——习惯上简称为“函数理论”。实值函数、傅里叶分析、函数分析、动力系统理论、偏微分方程或变分法的高级理论等也都在本书中有所提及。
-
热带几何导引Diane Maclagan,Bernd热带几何学是代数几何学的一个组合投影,为计算代数簇的不变量提供了新的多面体工具。它基于热带代数,其中两个数的和是它们的最小值、乘积是它们的和。这将多项式转化为分段线性函数,将其零点集转化为多面体复形。热带簇保留了其对应的经典簇的大量信息。热带几何学是21世纪以来发展迅速的一门年轻学科,在将自己确立为一个独立领域的同时,它与纯数学和应用数学的许多分支都有着深刻的联系。本书完整地提供了热带几何学的介绍,适合初学该理论的研究生使用。本书对基本定理和结构定理等主要结果进行了证明,用大量的例子和计算解释了主要概念。每一章最后都提出了一些问题,这些问题将帮助读者实践他们的热带几何学技能,并获取相关研究文献。
-
数学物理问题[俄]帕维尔·费多罗夫本书是一部版权引进自俄罗斯的俄文原版技术专业本科生教材,中文书名可译为《数学物理问题》。本书的作者是:帕威尔.费多罗夫,他是俄罗斯人,萨拉托夫国立技术大学应用数学教研室教授,主要研究方向为数学和刚体力学,从事教育行业35年。
-
分析学教程 第4卷 傅里叶分析 常微分方程 变分法[英]尼尔斯·雅各布(Niels Jacob)《分析学教程.第4卷,傅里叶分析,常微分方程,变分法(英文)》是分析学课程著作的第四卷,在本卷中作者讨论了傅里叶分析、常微分方程和变分法的基础知识(一维情况下的),其中包括一些关于分析动力学的结果,即哈密顿力学。
-
矩阵理论刘启明 编本书比较全面、系统地介绍了矩阵的理论、方法及其应用。全书分别介绍了线性空间与线性变换、欧氏空间与酉空间理论、向量与矩阵的范数理论及应用、矩阵分析与应用、矩阵的分解与特征值的估计、广义逆矩阵、特殊矩阵等内容。附录部分包括一元多项式理论、多元函数理论、基于MATLAB的矩阵运算。各章配有一定数量的习题。本书可作为工科院校高年级本科生和研究生的教材,也可作为相关专业的教师及工程技术人员的参考书。
-
无穷的玩艺 数学的探索与履行[匈]罗兹?佩特(Rózsa Péter) 著;朱梧槚 袁相碗 郑毓信 译《无穷的玩艺——数学的探索与旅行》是数学家路沙·彼得所写的数学普及读物,是一本引人入胜的名著。不同任何公式,着重讨论数学的思想方法。从原始的计数开始,到达数理逻辑这一现代数学分支为止。
-
分析学教程 第2卷 多元函数的微分和积分 向量微积分[英]尼尔斯·雅各布(Niels Jacob)本书的目标是为学生和讲师提供易于理解的资料。本书是为大学二年级以上的学生设计的分析学课程的第二卷,本书包括多元函数的微分、多元函数的积分、矢量微积分三部分,本卷的目的是将一个实变量实值函数的分析扩展到从Rm到Rn的映射。
-
极值Kahler度量引论Gábor Székelyhidi微分几何中的一个基本问题是在流形上寻找正则度量。最著名的例子是Riemann面的经典单值化定理。Calabi引入极值度量是为了在K?hler几何的框架中找到这一结果的高维推广。本书介绍了对极值K?hler度量的研究,特别是关于射影流形上极值度量的存在与代数几何意义下的基本流形的稳定性猜想。本书阐述了猜想在分析和代数两方面的一些基本思想;概述了许多必要的背景材料,如基本K?hler几何、矩映射和几何不变理论。除了极值度量的基本定义和性质之外,本书也对该理论的几个亮点在研究生可以理解的水平上进行了讨论:关于K?hler-Einstein度量存在性的丘成桐定理、田刚的Bergman核展开、Donaldson的Calabi能量下界以及爆破的常标量曲率K?hler度量的Arezzo-Pacard存在定理。
-
几何群论Mladen Bestvina,Mich几何群论是指利用来自拓扑、几何、动力学和分析的工具研究离散群。这一领域发展非常迅速,本书对在这一发展中发挥了关键作用的各种主题进行了介绍和概述。本书包含了帕克城数学研究所关于几何群论课程的讲义。该研究所开设了由该领域的专家提供的一系列密集的短期课程,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课程不重复。该课程从适合研究生的导论水平开始,并引导到目前活跃的研究课题。本书的文章包括对CAT(0)立方体复形和群、现代小消去理论、一般CAT(0)空间的等距群的介绍,以及在映射类群和CAT(0)群的背景下对幂零亏格的讨论。一门课程概述准等距刚性,其他课程包括对外层空间的几何的探索、算术群的作用、关于格和局部对称空间的讲座、标记长度谱和扩展图,tau性质和近似群。本书是对几何群论感兴趣的研究生和研究人员的宝贵资源。
-
调和分析Barry SimonPoincaré 奖得主Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第3部分讨论了点态极限(通过包含遍历定理和鞅收敛来超越通常关注的Hardy-Littlewood极大函数)、调和函数和位势论、框架和小波、[Math Processing Error] 空间(包括有界均值振荡(BMO))以及最后一章中的许多不等式,包括Sobolev空间、Calderon-Zygmund估计和超压缩半群,进而回到第1部分的主题。本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。