数学
-
线性系统理论蔡林沁等暂缺简介... -
俄罗斯数学经典(俄)弗拉基米尔·阿诺德本书是苏联/俄罗斯数学家阿诺德为本科生写的讲义,内容简明扼要,读者只需掌握线性代数、基础分析和常微分方程知识。主要包括以下内容:单一阶方程的一般理论;波传播理论中的Huygens原理;弦振动;傅里叶方法;振荡理论和振动原理;调和函数特性;拉普拉斯基本解及位势;双层位势;球函数、麦克斯韦定理和可去奇点定理;用拉普拉斯方程解边界值问题;线性方程和线性系统理论。 -
局域共振谱理论及其应用邓又军,刘宏宇本书致力于局域共振的光谱理论,包括表面等离子体/极化子共振,非典型共振,异常局域共振和内部传输共振。这些共振现象出现在不同的物理环境中,但具有相似的特征。它们构成了许多尖端技术和应用的基础,包括隐形斗篷和超分辨率成像。本书从数学和频谱的角度,以系统全面的方式对这些共振现象及其相关应用进行了统一的处理,涵盖了声波、电磁波和弹性波散射。 -
分析学Elliott H. Lieb,Mich本书是一本极具特色的实分析优秀教材。内容包括Lp空间、重排不等式、积分不等式、分布理论、Fourier分析、位势论和Sobolev空间等,还有专门的章节介绍变分法及特征值问题,其中涵盖了许多数学物理的例子。阅读本书,读者只需要普通微积分的基础,但通过本书读者可以迅速地从基本的测度论进入广阔的分析世界,领略一些近年来新的研究成果。毫不夸张地说,掌握了本书知识,读者对数学分析的理解将会迈上一个新台阶。本书适合作为高等院校数学专业研究生的教材和教师的参考书,也适合自然科学和工程院系对分析工具感兴趣的学生阅读。 -
最优因析设计理论张润楚试验设计是近代科学发展的重要基础理论之一。它研究不同条件下各种试验的最优设计准则、构造和分析的理论与方法。为适应现代试验的需要,作者于2006年开始建立了一个新的最优因子分析设计理论,包括最优性准则、最优设计构造,以及他们在各种不同设计类中的推广。本书首先给出近代试验设计,主要是多因子试验设计的基本知识和数学基础,接着从二水平对称因子设计开始介绍了该理论的一些基本概念,包括AENP的提出、GMC准则的引进、GMC设计的构造等。书中对由AENP建立的GMC准则得到的设计与由WLP建立的MA型准则得到的两类设计的优良性进行了详细比较。利用AENP理论,还证明了过去已有的两个准则MA和MEC(最大估计容量准则)得到的最优设计在只关心低阶效应时是等价的。随后的数章分别介绍了GMC理论在各类设计中的推广和应用,包括分区组因析设计、裂区设计、混合水平因析设计、非正规因析设计、多水平因析设计、折衷设计、稳健参数设计,建立了各种情形的GMC准则。书中还给出了大量的最优设计表供实际应用。 -
庞特里亚金自传Л. С. 庞特里亚金 著,霍晔 译庞特里亚金,苏联杰出数学家,13岁时因事故导致双目失明,但凭借令人惊叹的坚韧精神和对数学的热爱,终成一代大师。他对拓扑学尤其是代数拓扑学的发展产生了决定性影响,其著名的“庞特里亚金极大值原理”成为控制论的里程碑。他的学术思想在很多方面指引了20世纪数学的发展。 庞特里亚金始终关注社会生活,在各种会议上发表精彩且热情洋溢的讲话。他担任过苏联驻国际数学联盟代表,主管过数学文献的出版,曾尝试解决苏联中小学教育中的一些问题。 由于身体的缺陷,庞特里亚金不方便记日记,但凭借机敏的头脑和超强的记忆力,他能够洞察最微小的细节并牢记于心。本书是庞特里亚金在晚年写的自传,手稿由其遗孀提供,很好地记录和反映了苏联科学发展一段重要时期的历史。庞特里亚金在书中大胆分享了学术界很多事件的内情和自己的真情实感,本书的历史价值和教育价值也正在于此。 -
计算复杂系统郭大蕾本书应用智能计算的理论与方法,结合智能控制理论对工程系统与社会科学中普遍存在的非线性动力学与控制问题进行了详细阐述,介绍了目前在该领域的一些基本分析方法和计算技术,内容涉及复杂性与复杂系统、智能计算、复杂网络、多尺度分析、计算材料、计算经济、计算实验、非线性建筑、复杂交通工程管控、决策支持、管理与控制以及其他智能计算在新兴领域中的进展。本书将理论分析、数据计算和实验研究相结合,注重结果的完整性和真实性。 -
数学文化览胜集李国伟本书的主轴是“艺数”。“艺数”是近年来台湾数学科普界所新造的名词,它的范围至少包含以下三类:(1)以艺术手法展示数学内容;(2)受数学思想或成果启发的艺术;(3)数学家创作的艺术。数学与艺术互动最深刻的史实,莫过于欧洲文艺复兴时期从绘画发展出透视法,里昂?阿尔伯蒂的名著《论绘画》开宗明义:“我首先要从数学家那里撷取我的主题所需的材料。”这种技法日后促成数学家建立了射影几何学,终成为19世纪数学的主流。以往很多抽象的数学概念,数学家只能在脑中想象,很难传达给外行人体会。但是自从计算机带来的革命性进步,数学的抽象建构也得以用艺术的手法呈现出来。本书有心向读者介绍“艺数”这种跨接艺术与数学的领域,也让大家了解在台湾所开展的推广活动。 -
动力系统中的小除数理论及应用司建国,司文《动力系统中的小除数理论及其应用》详细介绍动力系统中的一维和多维小除数理论及其应用, 系统收录了作者二十余年的研究成果. 《动力系统中的小除数理论及其应用》内容涉及 Diophantine 数及向量、Brjuno 数及向量、Liouville 数及向量的基本性质; 一维小除数理论在研究解析芽的线性化、平面映射的解析不变*线、出现在量子力学和组合数论中的泛函微分方程的解析解、广义迭代根问题的诸多方面的应用; 多维小除数理论在研究圆周和环面上的拟周期驱动流的线性化、退化拟周期驱动系统的不变环面的存在性和拟周期分叉、具有拟周期驱动偏微分方程 Liouville 不变环面的保持性以及二维完全共振薛定谔方程拟周期解的构造方面的应用. 《动力系统中的小除数理论及其应用》各章内容自相包含, 理论与应用并重, 便于读者阅读并且使读者尽快地借助小除数理论进入研究动力系统等学科的前沿. -
矩阵半张量积讲义 卷五程代展等暂缺简介...
