数学
-
数之简史Leo Corry 著,赵继伟、刘建新我们周围的世界充满了数字。它们是现代社会的基本支柱,我们几乎没有经过深思熟虑就接受和使用它们。但是这种情况是如何发生的呢?在本书中,Leo Corry讲述了从毕达哥拉斯时代到20世纪初的数字观念背后的故事。他概述了从古典希腊数学、伊斯兰数学、中世纪和文艺复兴时期的欧洲数学、科学革命,一直到18世纪至20世纪早期数学如何处理和构思数字的过程。本书着眼于基础辩论和实际使用数字,并展示了数字的故事如何与方程式的思想紧密联系在一起,为本科生、教师、工程师、职业数学家以及任何对数学史感兴趣的人提供了对数字的深刻见解。 本书作者Leo Corry是一位有国际声誉的现代数学史和物理学史专家。由于出自训练有素的专家之手,本书不同于由职业数学家写的数学史著作,包含大量的抽象概念和复杂的公式,也不同于一般过分重视考据的历史著作,包含太多的注解和引用,所以很适合作为大众读者深入了解数学概念和历史的通俗读物。此外,本书叙述的准确性、系统性和深度也超过现有的一般数学史著作。
-
流行病学中的数学模型(美)弗雷德·布劳尔 等著;金成桴,何燕 译本书是Fred等三个美国流行病学模型专家、数学家合著的Mathematical Models in Epidemiology一书的中译本。内容分流行病学的基本概念(包括各种类型的仓室模型、地方病模型、流行病模型、异质混合模型、媒介传播的疾病模型),特殊疾病的模型(包括结核病模型、艾滋病病毒/艾滋病(HIV/AIDS)模型、流感模型、埃博拉模型、疟疾模型、登革热模型与寨卡病毒模型),进一步概念(包括年龄结构和空间结构的疾病传播模型等)和展望未来四个部分,另加三个附录。
-
等几何边界元法董春迎,公颜鹏,孙芳玲《等几何边界元法》是作者近年来在等几何边界元法领域取得的主要成果的部分总结。《等几何边界元法》分为11章。第1章是绪论,其对等几何边界元法进行了简单的介绍。第2章简要介绍了等几何分析的基础知识。第3和4章分别介绍了位势问题和非均质热传导问题的等几何边界元法。第5和6章分别介绍了非均质弹性问题和涂层薄体结构的等几何边界元法。第7章介绍了裂纹问题的等几何边界元法。第8、9和10章分别介绍了弹性动力学问题、液体夹杂复合材料和声学问题的等几何边界元法。第11章介绍了等几何边界元的快速直接算法。
-
邦费罗尼不等式及概率应用石焕南本书分为6章,从一道可用邦费罗尼不等式解答的IMO试题谈起,详细阐述了概率与不等式、概率与组合问题、概率与求和、概率与积分等内容,论述了邦费罗尼不等式及其在概率论中的应用,充分体现出用概率论知识来解答其他数学问题的优越性.本书适合大学数学系的学生、中学数学教师、参加数学竞赛的教练员和参赛选手以及数学爱好者参考使用.
-
中国表示法及其逻辑研究杜国平本书在H.M.Sheffer和张清宇先生等人工作的基础上,提出了一种创新型的逻辑符号表示法——中国表示法。在其中仅仅使用一对括号,就可以在一个公式中同时表示出所有的命题联结词、量词、模态词和时态词等逻辑常项,由此可以极大地简化构建逻辑系统所需的初始联结词。本书阐述了中国表示法区别于其他表示法的整体性特征,证明了中国表示法的结构 性及其强大的表达功能,基于中国表示法探究了若干逻辑基础问题,获得了若干创新性成果。
-
一元函数微积分学常见题型与解题思路分析赵莉莉全书共七个章节,包括一元函数极限与连续性的常见题型与解题思路、导数与微分的常见题型与解题思路、微分中值定理与导数应用常见题型与解题思路、不定积分的常见题型与解题思路、定积分的常见题型与解题思路、证明积分等式与不等式的若干方法,以及微分方程常见题型与解题思路。
-
不同能量重离子碰撞流体力学演化源的干涉学分析尹洪杰,朱延鑫本书内容包括:高能重离子碰撞和π干涉学研究及其基本理论介绍;HIRFL-CSR能量下(2+1)维演化源的π干涉学分析;GSI-FAIR能量下柱对称膨胀源的干涉学分析;极端相对论能量下重离子碰撞的π干涉学分析;研究结论。本书内容详尽,结构完整,适合粒子物理和原子核物理研究生和高年级本科生学习使用,也可供有关科研人员参考。
-
多元非理想插值的计算方法及应用崔凯本书主要总结了作者近年来在多元非理想插值方面的相关工作,主要包括以下三方面的研究成果:提出了 一般的多元插值格式,得到了插值格式几乎正则的一个必要条件和正则的一个充分条件;将单项微分插值条件的插值问题拓展到了多项式微分插值条件的情形,并将计算理想插值的BM算法推广到了多元非理想插值问题上;给定摄动结点集,得到了计算任意单项序下稳定单项基的算法,并将该算法应用在曲面重建中。本书的成果进一步丰富了多元非理想插值理论,可供高等学校计算数学及应用数学等相关专业的教师和研究生使用。
-
2024张宇强化36讲+1000题套装数一暂缺作者暂缺简介...
-
数学分析应该这样学【英】劳拉·阿尔柯克数学分析(涵盖高等数学A、高等微积分和实分析)是大多数理科类本科专业必修的基础科目。《数学分析应该这样学》分为两部分,部分讲解什么是高等数学,以及高等数学如何从定义和公理出发,以证明为手段搭建一致的数学理论,同时为同学们制定了Z优的高等数学学习策略,并告诉同学们如何在心理上应对初学阶段难免的挫折感;第二阶段以深入浅出的方式讲解高等数学中的关键核心概念,包括序列、极限、连续、可微、可积和实数等,为学生的后续学习打下坚实的基础。这本书还提供了学习建议,尤其是能让学生成功学习数学分析的技能,让刚接触高等数学的学生很容易理解和接受。