数学
-
矩阵论[苏]Ф.Р.甘特马赫尔 著; 柯召,郑元禄 译本书介绍了矩阵及其相关内容,共有17章,主要介绍了矩阵及其运算、高斯算法及其一些应用、n维向量空间中的线性算子、矩阵的特征多项式与最小多项式、矩阵函数、多项式矩阵的等价变换(初等因子的解析理论)、n维空间中线性算子的结构(初等因子的几何理论)、矩阵方程、U-空间中的线性算子、二次型与埃尔米特型等内容。书中配有相关的例题及解答,可供读者更好地了解相应的内容。本书适合高等院校师生和数学爱好者参考阅读。 -
思维的定律刘培杰 杜莹雪 编乔治·布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为“思维的定律”,理由是命题代数和思维过程的原则紧密相联。新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。 -
数论理论[苏]A.K.苏什凯维奇 著本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅读。 -
数学解析理论[苏]别尔曼特 著; 数学解析理论翻译组 译数学奥林匹克是较高层次的数学竞赛,在数学的发展中起着至关重要的作用。本书汇集了第1届至第20届中国东南地区数学奥林匹克竞赛试题及解答,内容翔实。本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者参考阅读。 -
复变函数引论普利瓦洛夫 著; 复变函数引论翻译组 译本书以莫斯科学派的逻辑方法组织复变函数内容,从基础知识到理论延拓,共分十三章,分别为:复数、复变数与复变函数、线性变换与其他简单变换、柯西定理和柯西积分、解析函数项级数及解析函数的幂级数展开式、单值函数的孤立奇异点、留数理论、毕卡定理、无穷乘积与它对解析函数的应用、解析开拓、椭圆函数理论初步、保角映射理论的一般原则,以及单叶函数的一般性质。基础知识讲解细致、全面,很好地构建了复变函数基础框架,拓展理论清晰、广泛,为复变函数的进一步学习和物理应用埋下了伏笔。本书可作为数学专业学生、教师的教学参考书,也可为物理、工程专业的学生及科研人员提供理论参考。 -
微分学理论[苏]H.H.鲁金 著; 微分学理论翻译组 译本书系统全面地介绍了微分学的相关理论,共包含11章内容,分别为基本公式、数、量、函数、极限、连续性、微分法、代数式的微分法则、导数的各种应用、逐次微分法及其应用、超越函数的微分法。本书适合大学数学系师生及数学爱好者参考阅读。 -
R语言与统计分析汤银才 主编本书以数据的常用统计分析方法为基础,在简明扼要地阐述统计学基本概念、基本思想与基本方法的基础上,讲述与之相对应的R 函数的实现,并通过具体的例子说明统计问题求解的过程。 本书注重思想性、实用性和可操作性;在内容的安排上不仅包含了基础统计分析中的探索性数据分析、参数的估计与假设检验,还包含非参数统计分析的常用方法、多元统计分析方法; 此外还安排了在R 新生态下数据治理与可视化的拓展性内容。每一部分都通过具体例子重点讲述解决问题的思想、方法和在R 中的实现过程。阅读本书,读者不仅可以快速学会R 的基本原理与核心内容,还可以根据提供的例子与相应的R 程序学会解决问题的统计计算方法与基本的编程技术,为解决更复杂的统计问题奠定扎实的基础。 本书可作为各专业本科生、研究生数理统计或应用统计课程的基础教材或实验教材,也可作为从事数据统计分析研究人员、工程技术人员的工具书或参考读物。 -
变序的项的极限分布律[苏]H.B.斯米尔诺夫 著 《变序的项的极限分布律》翻译组在本书中,斯米尔诺夫研究了秩数为k=λn(λ为常数,0本书适合大学师生及数学爱好者参考使用. -
搞定平面几何昍爸 张志朝 宋书华许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。 -
119个三角问题[美]蒂图.安德雷斯库 著 余应龙 译在第1章中编者呈现了最主要的理论,并给出大量的例题,这有助于解决后面的问题。第2章提出了一些问题,要解决这些问题,你需要对在“理论与例题”这一章中出现的材料有一个基本的理解。在第3章中你将会发现一些既需要更深刻理解这一理论的问题,也需要提升在关键概念之间建立关联的能力。在第4章和第5章中编者将提供这些问题的对应解答。本书适合于正在接受数学奥林匹克训练的学生以及期待在三角学及其相关领域提升能力的读者参考阅读。
