数学
-
紊流数学模型研究丁道扬,吴时强在计算技术迅速发展的今天,探求有效数值计算方法预测紊流运动规律,有其重大的理论意义和实用价值。《紊流数学模型研究》系统讲述了通过剖开算子法,用协调或拟协调单元解对流算子的计算方法,对高雷诺数紊流开展DNS计算的基本理论、方法及计算实例。《紊流数学模型研究》共11章,第1~4章分别介绍紊流基本理论、计算方法、典型过跌坎紊流等,第5~11章分别介绍不同情景条件下的紊流计算实例,如二维/三维跌坎紊流DNS计算、三维跌坎紊流LES计算、网格加密计算及二维和三维对比计算分析等。 -
线性代数郑艳霞本教材是高等学校经济类相关专业数学基础课“线性代数”课程的教材。全书共分六章。主要内容包括行列式、矩阵、线性方程组、向量空间、矩阵的特征值与特征向量及二次型。本书按章配置适量习题,书末附有习题答案与提示,供教师和学生参考。教材的阐述兼顾线性代数的科学性和深入浅出。在例题的选配和讲解上,达到题型多样,难度深浅适当。习题的配备上分为基础题型和综合题型,既照顾到基础,又增加了部分习题的难度,给学有余力的学生更多的提升空间。本教材在讲授知识的同时,注重培养学生数学的思维方式和运用数学知识解决经济问题的能力。本教材适合高等学校非数学专业的线性代数课程教材或教学参考书。 -
工程数学问题求解算法及应用冯江华《工程数学问题求解算法及应用》是一本专注于介绍各类数值计算算法的专著,其主要内容安排如下:*先,介绍各类矩阵的分解算法,比如**的LU分解、QR分解等,并以矩阵分解原理为基础,介绍各类线性方程组的求解方法。其次,介绍求解线性方程组的各类迭代算法,如Jacobi迭代算法、Gauss-Seidel迭代算法等,接着导入非线性方程的求解问题,介绍求解该问题的各类迭代算法,如Newton算法等,进一步介绍求解非线性方程组的Newton算法衍生的各类迭代算法,如拟Newton算法等。再次,介绍各类插值和拟合算法,如三次样条插值、*小二乘拟合等。*后,以Euler算法为基础介绍常微分方程(组)求解算法和偏微分方程求解算法。 -
代数几何扶磊代数几何是数学中的核心学科,与数学的众多分支相关。本书是代数几何的入门课本,其目标是在假设读者具有最少预备知识的情况下,介绍概形上凝聚层的上同调理论,为读者学习更专业的代数几何做充分准备。书中涵盖了Grothendieck的经典著作《代数几何原理》(EGA)I-III 中的主要内容,并假设读者熟悉Atiyah和Macdonald编写的《交换代数导论》的第1-8章。本书为第二版,除纠正第一版中的错误、改进表述外,作者还新增了练习题。 本书适合高等院校数学及相关专业作为代数几何的教科书使用。 -
条件非线性最优扰动及其在大气穆穆等本书全面系统地介绍了条件非线性最优扰动(conditional nonlinear optimal perturbations,CNOP)方法的理论基础、多种数值求解方法及其在大气和海洋科学中的广泛应用。全书包括理论篇、数值求解篇和应用篇,共分8章。第1章是理论篇,介绍CNOP方法的理论基础,对其提出背景、发展历程、理论框架、物理意义以及数值求解方法进行了总体描述。第2章是数值求解篇,结合不同的数值模式,详细介绍用多种不同策略的优化算法数值求解CNOP,包括伴随方法、粒子群优化算法、差分进化算法、梯度定义法等。第3章至第8章是应用篇,分别介绍CNOP方法在厄尔尼诺-南方涛动春季预报障碍、台风目标观测、阻塞和北大西洋涛动可预报性、大西洋经圈翻转环流研究、黑潮大弯曲路径变异和黑潮入侵南海研究、陆地生态系统模拟不确定性研究中的成功应用。 -
非精确概率归纳逻辑研究潘文全在后疫情时代,人类面临着如何防范和化解黑天鹅事件的挑战。评估风险和化解风险的问题,可以通过非精确概率归纳的方法来解答,这对于我国社会主义建设具有很重要的应用价值。在评估风险程度的理论基础上,本书进一步探讨了如何在面临风险时做出正确的决策。在风险决策问题中,本书首先定义了六种风险选择函数来处理最简单、最基础的非序贯风险决策,然后在此基础上,分析了更一般的序贯风险决策,并给出了两种解决方案——标准范式和扩展范式。最后,本书回到非精确概率归纳风险理论与经典逻辑的关系,因为下界预期理论的一种特例等价于命题逻辑,命题逻辑完全被嵌入非精确概率归纳逻辑中。基于这种关系,可以发现一致性概念的一种“连续”内涵。本书是系列丛书“广东哲学社会科学规划优秀成果文库(2021—2023)”中的一本,能较好体现当前我省哲学社会科学研究前沿,主要作为哲学专业高校师生、相关领域研究人员等的参考用书。 -
斯蒂尔杰斯定理积分刘培杰数学工作室本书共分三编:第一编为引言,主要介绍了Stieltjes与Stieltjes积分、Radon-Stieltjes积分等;第二编为性质篇,主要介绍了Stieltjes积分和抽象积分的极限性质、Riemann-Stieltjes积分和积分中值定理等相关知识;第三编为应用篇,重点介绍了Stieltjes积分及其应用、用Lebesgue-Stieltjes积分定义的双曲型方程广义解等知识.本书适合大学师生及数学爱好者阅读参考. -
有向几何学喻德生本书是《有向几何学》系列成果之四.在《平面有向几何学》和《有向几何学》系列研究的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向面积法和有向面积定值法,对平面2n点集、2n多角形(多边形)重心线的有关问题进行深入、系统的研究,得到一系列的有关平面2n点集、2n多角形(多边形)重心线的有向度量定理,主要包括2n点集、2n多角形(多边形)重心线三角形有向面积的定值定理;点到2n点集、2n多角形(多边形)重心线有向距离的定值定理;共点2n点集重心线有向距离定理;2n点集、2n多角形(多边形)重心线的共点定理、定比分点定理;2n点集各点、2n多角形(多边形)各顶点到重心线的有向距离公式等,以及以上定理和公式的应用,从而揭示这些定理之间,这些定理与经典数学问题、数学定理之间的联系,较系统、深入地阐述了平面2n点集、2n多角形(多边形)重心线有向度量的基本理论、基本思想和基本方法.它对开拓数学的研究领域,揭示事物之间本质的联系,探索数学研究的新思想、新方法具有重要的理论意义;对丰富几何学各学科,以及相关数学学科的教学内容,促进大、中学数学教学内容改革的发展具有重要的现实意义;此外,有向几何学的研究成果和研究方法,对数学定理的机械化证明和工程有关学科也具有重要的应用和参考价值. -
并行计算张晔,(俄罗斯)D.V.卢基扬年科(D.V.Lukyanenko)《并行计算》是分布式并行计算的算法设计和消息传递并行编程的入门教程。《并行计算》详细介绍了包括MPI基础知识、求解线性代数方程组的共轭梯度法的并行算法实现、并行程序的效率和可扩展性、进程组和通信器操作、求解三对角线性代数方程组的追赶法、求解偏微分方程的算法并行化方法等相关内容;还分析了并行程序可扩展性差的主要原因,为读者提供了全面的并行计算知识体系和解决方案。《并行计算》提供了典型科学计算问题的并行算法与程序设计实例,并介绍了国际上流行的科学计算软件、工具及平台。内容从简到繁、循序渐进,可帮助读者逐步掌握并行计算技能,解决学习和工作中的问题。 -
微分几何与共轭曲面原理魏冰阳,蒋闯本书重点论述微分几何与共轭曲面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数、曲线论与曲面论为基础,拓展了密切曲面、等距曲面、曲率并矢等内容,丰富了典型曲线与曲面的应用实例;然后概括了共轭曲面运动的两类特征函数与特征矢量,围绕共轭曲面的整体几何与微分几何论述了空间曲面运动的形成原理、模型构建与分析方法;最后以弧齿锥齿轮、摆线针轮啮合特性分析与建模为例,讲述了齿面拓扑修形与轮齿接触分析的基础理论与计算方法。为了更加贴合工程实践,书中未涉及的一些重要的齿轮传动类型以习题的形式呈现,方便读者进行深入的了解和学习。
