人工智能
-
智能手机维修从入门到精通侯海亭,李翠,徐宏毅,马彦发,倪邦火本书由多位业界知名手机维修专家联合编写,循序渐进地介绍了智能手机维修的知识,主要内容包括:智能手机的构成、智能手机的元器件、智能手机维修工具的使用、智能手机的电路基础、智能手机各单元电路故障检查与维修方法等。本书以目前市面上拥有量比较大的iPhone手机、华为手机等为例进行介绍并融入5G手机技术,注重实战,通俗易懂,兼顾先进性和实践性是本书的一大特色。为便于读者高效地掌握本书内容,编者还为本书录制了教学视频,读者扫描本书提供的二维码即可学习。 本书可作为维修从业人员、手机维修初学者掌握手机维修基础和技能提升的学习用书,也可用作大中专职业院校通信技术专业及职业技能等级培训的教学用书。
-
Python迁移学习迪潘简·撒卡尔(Dipanjan Sarkar) 著,张浩然 译迁移学习是机器学习技术的一种,它可以从一系列机器学习问题的训练中获得知识,并将这些知识用于训练其他相似类型的问题。本书分为3个部分:第1部分是深度学习基础,介绍了机器学习的基础知识、深度学习的基础知识和深度学习的架构;第2部分是迁移学习精要,介绍了迁移学习的基础知识和迁移学习的威力;第3部分是迁移学习案例研究,介绍了图像识别和分类、文本文档分类、音频事件识别和分类、DeepDream算法、风格迁移、自动图像扫描生成器、图像着色等内容。本书适合数据科学家、机器学习工程师和数据分析师阅读,也适合对机器学习和迁移学习感兴趣的读者阅读。在阅读本书之前,希望读者对机器学习和Python编程有基本的掌握。
-
人工智能技术与大数据[印] 阿南德·德什潘德(Anand Deshpande) 著,赵运枫,黄伟哲 译本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何用人工智能技术(自然语言处理、模糊系统、遗传编程、群体智能、强化学习、网络安全、认知计算)实现大数据自动化解决方案。如果读者对 Java 编程语言、分布式计算框架、各种机器学习算法有一定的了解,那么本书可以帮助你建立一个全局观,从更广阔的视角来看待人工智能技术在大数据中的应用。如果读者对上述知识一无所知,但是对大数据人工智能的技术、业务非常感兴趣,那么可以通过本书获得从零到一的认知提升。
-
机器学习提升法[美] 罗伯特·夏皮雷,约夫·弗雷德 著,沙灜 译本书主要介绍一种机器学习算法——提升法,主要关注其基础理论和算法,也兼顾了应用。全书共14章,分为4个部分。首先给出机器学习算法及其分析的概要介绍,然后第一部分重点探究了提升法的核心理论及其泛化能力。第二部分主要介绍了有助于理解和解释提升法的其他理论,包括基于博弈论的解释、贪心算法、迭代投射算法,并与信息几何学和凸优化建立了联系。第三部分主要介绍利用基于置信度的弱预测的AdaBoost算法的实用扩展,并用于解决多类别分类问题和排序问题。第四部分讨论了高级理论话题,包括AdaBoost算法、**提升法和连续时间下的提升法之间的统计一致性。附录部分介绍了所需高级的数学概念。本书适合对提升法感兴趣的读者,本书每章都附有练习,因此也适用于高等院校相关课程的教学。
-
深度学习搜索引擎开发[意] 托马索·泰奥菲利(Tommaso Teofili) 著,李军,天舒 译本书是市面上少见的将搜索与深度学习相结合的书,讨论了使用(深度)神经网络来帮助建立有效的搜索引擎的方法。阅读本书无须具备开发搜索引擎的背景,也不需要具备有关机器学习或深度学习的预备知识,因为本书将介绍所有相关的基础知识和实用技巧。书中研究了搜索引擎的几个组成部分,不仅针对它们的工作方式提供了一些见解,还为在不同环境中使用神经网络提供了指导。读完本书,你将深入理解搜索引擎面临的主要挑战、这些挑战的常见解决方法以及深度学习所能提供的帮助。你将清晰地理解几种深度学习技术以及它们在搜索环境中的适用范围,并深入了解Lucene和Deeplearning4j库。书中示例代码用Java编写。
-
人工智能实践录中国电子信息产业发展研究院(赛迪研究院),人工智能产业创新联盟 著本书分为3部分,分别是综述篇、通用技术篇和行业应用篇。综述篇介绍了现阶段人工智能产品发展情况和人工智能政策环境。通用技术篇精心挑选10个以研发底层技术为核心竞争力的企业的产品,详细介绍了它们的实现思路以及现阶段应用。行业应用篇共有24个案例,主要汇集了人工智能技术与实体经济结合的应用案例,重点关注人工智能技术的应用场景拓展。
-
用Python实现深度学习框架张觉非,陈震 著本书带领读者用原生Python语言和Numpy线性代数库实现一个基于计算图的深度学习框架MatrixSlow(类似简易版的PyTorch、TensorFlow或Caffe)。全书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理,比如模型、计算图、训练、梯度下降法及其各种变体。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide & Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题。第三部分是工程篇,讨论了一些与深度学习框架相关的工程问题,内容涉及训练与评估,模型的保存、导入和服务部署,分布式训练,等等。
-
人工智能数学基础唐宇迪 等本书以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。 全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。 本书适合准备从事数据科学与人工智能相关行业的读者。
-
智能教育任萍萍 著人工智能等新技术正在悄然改变着教育行业的方方面面,如何应对人工智能带来的机遇与挑战已成为教育行业必须面对的问题。教育是培养面向未来的孩子,只有了解我们所生活的智能时代,找到适应智能时代的学习方法,才能更好地规划未来。 当教育与人工智能相遇,会碰撞出怎样的火花?当前人工智能等新技术在教育领域的基本应用覆盖了“教、学、考、评、管”全场景,有效助力教育教学模式创新,为学生、教师和各级教育管理者提供了精准、便捷的服务。本书对智能时代的重要趋势做出革命性的解读,披露了对未来教育的思考和判断,为探索智能教育变革的可能性提供一些建议和思考。
-
分布式机器学习实战陈敬雷 著本书由浅入深,逐步讲解分布式机器学习的框架及应用,内容板块包括主流大数据算法系统架构设计、大数据基础、mahout分布式机器学习平台、Spark分布式机器学习平台、TensorFlow等。同时配套完整工业级实战项目,例如个性化推荐算法系统、人脸识别,对话机器人。通过阅读本书,读者不仅可以学习到分布式机器学习的知识,还能通过实战案例更好地将理论融入到实际工作中。本书适合想学习分布式机器学习的初学者阅读,对于有一定经验的分布式大数据方向的从业人员及算法工程师,也可以从书中获取很多有价值的知识。