人工智能
-
诱发式脑印二威,〔加〕蒂姆·泽埃尔,江京 著《诱发式脑-机接口技术》主要介绍诱发式脑-机接口技术。《诱发式脑-机接口技术》共12章,主要内容包括:SSVEP特征机理研究与SSVEP-BCI优化,基于听触觉的非视觉P300-BCI方法,基于P300和SSVEP的多模态BCI,基于P300和ErrP的多模态BCI等。《诱发式脑-机接口技术》是作者在多项国家自然科学基金项目和科技委创新特区项目支持下取得的研究成果的总结,意在推动脑-机接口理论与应用的发展,对于人-机混合智能的机理研究和脑-机智能融合系统的应用具有一定的科学意义。
-
企业级AI技术内幕王家林,段智华 著《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》分为盘古人工智能框架开发专题篇、机器学习案例实战篇、分布式内存管理Alluxio解密篇,分别对人工智能开发框架、机器学习案例及Alluxio系统进行透彻解析。盘古人工智能框架开发专题篇,通过代码讲解多层次神经网络、前向传播算法、反向传播算法、损失度计算及可视化、自适应学习和特征归一化等内容。机器学习案例实战篇,选取机器学习中具代表性的经典案例,透彻讲解机器学习数据预处理、简单线性回归、多元线性回归、多项式回归、支持向量回归、决策树回归、随机森林回归等回归算法,逻辑回归、k近邻算法、支持向量机、朴素贝叶斯、决策树分类、随机森林分类等分类算法、k均值聚类、层次聚类等聚类算法,以及关联分析算法,并对回归模型、分类模型进行性能评估。分布式内存管理Alluxio解密篇,详细讲解Alluxio架构、部署、底层存储及计算应用、基本用法、运行维护等内容。
-
深度学习基础与应用武玉伟,梁玮,裴明涛,吴心筱《深度学习基础与应用》分四部分介绍深度学习算法模型及相关应用实例。首部分介绍在深度学习中必备的一些数学和机器学习的基础知识。第二部分介绍卷积神经网络、循环神经网络、深度强化网络等经典模型,并对每种模型从原理、结构、优化等方面进行论述。第三部分介绍深度学习中常用的优化方法及训练技巧。第四部分结合实践来介绍深度学习在计算机视觉、模式识别中的应用。《深度学习基础与应用》同时兼顾理论和应用,有助于读者理解基本理论知识,并将理论知识用于实际应用。《深度学习基础与应用》既可以作为高等院校计算机及相关专业的高年级本科生和研究生教材,也可供从事人工智能相关领域的工程师和研究人员参考。
-
TensorFlow 2学习指南[英] 托尼·霍尔德罗伊德(Tony Holdroyd) 著《TensorFlow 2学习指南》探讨了TensorFlow 2的诸多应用实践,内容涵盖各种热门的应用场景,包括波士顿房价、图像去噪、图像识别、图像风格迁移、文本生成、文本情感分析等。同时深刻剖析了TensorFlow 2在每个人工智能细分方向的应用实践,专门为“应用落地”而编写。书中每章聚焦一个具体的技术,提供多个详细的案例,并附有大量的代码和注释,帮助读者快速入门和熟练掌握。 《TensorFlow 2学习指南》可作为广大对TensorFlow感兴趣的读者的参考书,也可作为高等院校计算机、人工智能等相关专业的教材。
-
智能硬件与机器视觉陈佳林 著内容简介 这是一部讲解如何利用树莓派、OpenCV、Python等软硬件构建智能硬件并在其上实现图像分析、文字识别、人脸识别与追踪、视频监控等机器视觉功能的实用性著作。 全书一共11章: 第1~4章首先讲解了机器视觉在智能硬件领域的应用场景以及智能硬件上4种常见的机器视觉技术方案;然后讲解了树莓派和OpenCV的安装、配置以及其他准备工作;*后通过一些简单的案例和代码手把手教读者如何使用OpenCV。 第5~11章是本书的核心内容,通过几个具体的综合案例讲解了如何使用树莓派低成本玩转如下机器视觉场景:拍摄照片和视频、处理相机的原始数据、道路和商场的人流统计、道路信息的文字识别、人脸识别与追踪、中央AI视频监控等。以上案例循序渐进,环环相扣,所有代码均可在树莓派上运行,可轻松移植到任何ARM开发板上。
-
机器学习实战[法] 奥雷利安·杰龙(Aurélien Géron) 著,宋能辉,李娴 译这本机器学习畅销书基于TensorFlow 2和Scikit-Learn的新版本进行了全面更新,通过具体的示例、非常少的理论和可用于生产环境的Python框架,从零帮助你直观地理解并掌握构建智能系统所需要的概念和工具。全书分为两部分。第一部分介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分介绍神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。第一部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。通过本书,你会学到一系列可以快速使用的技术。每章的练习可以帮助你应用所学的知识,你只需要有一些编程经验。所有代码都可以在GitHub上获得。 代码获取方式: 1、微信关注“华章计算机” 2、在后台回复关键词:新版蜥蜴书
-
深度学习实战辛大奇 著《深度学习实战——基于TensorFlow 2.0的人工智能开发应用》以TensorFlow 2.0人工智能平台的基础架构为切入点,逐步过渡到TensorFlow 2.0项目开发实战和项目部署上线中,并重点介绍了使用TensorFlow 2.0的高级封装Keras搭建神经网络、训练神经网络和进行神经网络模型预测,让读者在项目实战中系统学习人工智能任务的工作流程及使用TensorFlow 2.0框架开发任务的完整过程,帮助读者深入系统地学习人工智能的开发应用。 全书3篇共14章,第1篇为入门篇,介绍了人工智能的基础知识,包括人工智能的发展、人工智能开发环境的部署与使用、TensorFlow 2.0框架与模型、神经网络、图像处理和TensorBoard可视化组件等;第2篇为实战篇,通过实例讲解如何使用TensorFlow 2.0进行实际项目开发、模型评估与优化,包含了神经网络曲线拟合、MNIST手写字体识别、图像风格迁移、车牌识别、智能中文对话机器人等实例应用;第3篇为部署上线篇,主要讲解TensorFlow Serving 部署模型上线和Flask 部署模型上线,从而实现完全生命周期的人工智能开发过程。 全书内容通俗易懂,知识全面,内容丰富,实用性和可操作性强,特别适合深度学习框架TensorFlow 2.0的入门读者和进阶读者阅读,同样适合TensorFlow 1.x版本的人工智能开发人员转型到TensorFlow 2.0、Python程序员、Python Web开发者等其他编程爱好者阅读。另外,本书也适合作为相关培训机构的教材使用。
-
深度学习进阶 自然语言处理[日] 斋藤康毅 著,陆宇杰 译《深度学习进阶:自然语言处理》是《深度学习入门:基于Python 的理论与实现》的续作,围绕自然语言处理和时序数据处理,介绍深度学习中的重要技术,包括word2vec、RNN、LSTM、GRU、seq2seq 和Attention 等。本书语言平实,结合大量示意图和Python代码,按照“提出问题”“思考解决问题的新方法”“加以改善”的流程,基于深度学习解决自然语言处理相关的各种问题,使读者在此过程中更深入地理解深度学习中的重要技术。
-
Python迁移学习迪潘简·撒卡尔(Dipanjan Sarkar) 著,张浩然 译迁移学习是机器学习技术的一种,它可以从一系列机器学习问题的训练中获得知识,并将这些知识用于训练其他相似类型的问题。本书分为3个部分:第1部分是深度学习基础,介绍了机器学习的基础知识、深度学习的基础知识和深度学习的架构;第2部分是迁移学习精要,介绍了迁移学习的基础知识和迁移学习的威力;第3部分是迁移学习案例研究,介绍了图像识别和分类、文本文档分类、音频事件识别和分类、DeepDream算法、风格迁移、自动图像扫描生成器、图像着色等内容。本书适合数据科学家、机器学习工程师和数据分析师阅读,也适合对机器学习和迁移学习感兴趣的读者阅读。在阅读本书之前,希望读者对机器学习和Python编程有基本的掌握。
-
人工智能技术与大数据[印] 阿南德·德什潘德(Anand Deshpande) 著,赵运枫,黄伟哲 译本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何用人工智能技术(自然语言处理、模糊系统、遗传编程、群体智能、强化学习、网络安全、认知计算)实现大数据自动化解决方案。如果读者对 Java 编程语言、分布式计算框架、各种机器学习算法有一定的了解,那么本书可以帮助你建立一个全局观,从更广阔的视角来看待人工智能技术在大数据中的应用。如果读者对上述知识一无所知,但是对大数据人工智能的技术、业务非常感兴趣,那么可以通过本书获得从零到一的认知提升。