人工智能
-
深度学习李易 著深度学习作为人工智能领域的“排头兵”,将在未来的新一轮产业升级中起到至关重要的作用。本书以“理论+实践”的形式帮助读者快速建立深度学习知识体系,不仅能在算法层面上理解各种神经网络模型,而且能借助功能强大且极易上手的Keras 框架,熟练地搭建和训练模型,应用于解决实际问题。 全书共12章,内容涵盖入门深度学习的绝大部分基础知识。第1章讲解如何搭建深度学习的编程环境,并简单回顾了学习深度学习必备的数学知识。第2章从回归算法出发带领读者踏上深度学习之路。第3~9章全面讲解时下几种主流神经网络结构,包括多层感知机(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)、 自动编码器(AE)、变分自动编码器(VAE)、对抗生成网络(GAN)等。第10~12章着重介绍时下主流的几类深度学习应用,包括图像识别、目标检测和自然语言处理等。无论是算法原理还是编程实践,本书都从易到难、循序渐进地讲解,并配合简单轻松的实例帮助读者加深印象。 本书不仅适合需要在工作中应用深度学习技术的专业人员,而且适合具备一定计算机编程基础的人工智能和深度学习爱好者。对于大专院校相关专业的师生,本书也是一本不错的参考读物。
-
人工智能邓文浩 著人工智能时代已经来临,这项技术正在改变人类的认知和生活,也对社会各个领域产生了重大的影响。本书从理论基础、商业落地、实战场景、案例分析多个方面介绍人工智能,讲述人工智能对农业、金融、娱乐、医疗、营销、工业、教育等领域的影响。另外,为了迎合时代热点,本书还分析了人工智能与5G、区块链等前沿技术的融合及融合效果,使读者了解当人工智能成为不可逆转的趋势,应该如何跟上时代的步伐。本书是一本不可多得的实战书,不仅具备很强的操作性,还具备一定的前瞻性,是读者提升能力的必备工具。
-
深度学习图像搜索与识别潘攀 著图像搜索和识别是计算机视觉领域一个非常重要且基础的题目。本书对构成图像搜索和识别系统的各个算法基础模块一一做了介绍,并在最后一章以拍立淘为例说明了各个模块是怎样一起工作的。针对每个算法模块,本书不仅深入浅出地解释了算法的工作原理,还对算法背后的演进机理和不同方法的特点进行了说明,在第2章至第8章最后均提供了经典算法的PyTorch 代码和相关参考资料。 本书既适合图像搜索和识别领域的初学者,也适合在某个单一任务方面有经验但是想扩充知识面的读者。
-
人机融合刘伟 著随着近几十年来技术的飞速发展,人机交互技术的地位越来越重要。本书目的是建立以信息流(包括输入、处理、输出过程)交互为基础的人机交互设计与评价思想体系,主要内容包括:人的感觉特性,人的情境认知特性,人的控制特性,人的行为信息分析,以及设计及评价方法、专题研究。
-
人工智能基础与应用韩雁泽,刘洪涛 著暂缺简介...
-
信息物理系统强化学习李崇(Chong Li),邱美康(Meikang Qiu) 著,卢苗苗 计湘婷 何源 席瑞 金梦 译本书研究的灵感来自于近期的强化学习(RL)和信息物理系统(CPS)领域的发展。RL植根于行为心理学,是机器学习的主要分支之一。不同于其他机器学习算法(如监督学习和非监督学习),RL的关键特征是其独特的学习范式,即试错。与深度神经网络相结合,深度RL变得如此强大,以至于许多复杂的系统可以被人工智能智能体在超人的水平上自动管理。另一方面,CPS被设想在不久的将来给我们的社会带来革命性的变化。这些例子包括新兴的智能建筑、智能交通和电网。
-
大脑的意识,机器的意识渡边正峰 著,岸本鹏子,安婷婷,胡实 译本书是一本关于人类智能和人工智能的科普读物。人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。本书通过“意识的奇妙”“追逐大脑中意识的踪影”“意识的实验性研究——操作实验”“如何看待意识的自然法则”“意识是信息,还是算法”“大脑的意识和机器的意识”等章节,介绍了意识产生的机理、外界因素对意识形成的影响、对意识的自然法则的诠释以及机器是否能实现对意识的模拟等内容。
-
人工智能基础凯文·沃里克 著,王希 译这是一本非常好看的人工智能领域的入门读物,神经网络、机器人等当下的热门研究课题都有涉及。具体来看,全书共分为六个模块,涵盖了人工智能研究的各个方面,介绍了经典人工智能和现代人工智能,内容涉及智能是如何定义的、机器是如何思考的、机器系统中的感知输入、意识的原理等,包括了人工智能背后的哲学、技术和基础方法等。虽然也给出了人工智能编程的基本框架,但并没有涉及复杂的程序编写细节。因此这本小书可以说是对人工智能的全面概览——它对每个特定的主题不会讲得过深,同时也给出了延伸阅读的资料,方便感兴趣的读者进一步阅读。
-
Keras实战王晓华 著Keras是一个用Python编写的开源人工神经网络库,可以作为TensorFlow、CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。本书从初学者的角度出发,为读者构建一个完整的Keras技术体系。 本书共分为9章,主要内容包括深度学习框架Keras的背景、搭建学习环境、深度学习的理论基础、卷积层与MNIST实战、多层感知机与MNIST实战、TensorFlow Datasets和TensorBoard、ResNet及其兄弟ResNext,最后是两个项目实战案例——词嵌入与情感分类。 本书既适合Keras深度学习初学者、深度学习算法技术人员阅读,也适合作为高等院校与培训机构人工智能相关专业的师生参考。
-
数据科学与商业分析[美] 马特·塔迪(Matt Taddy) 著,陈光欣 译大数据和机器学习等的兴起使得商业分析领域越来越倚重数据科学。本书详细介绍了商业数据科学中的关键元素,汇集了机器学习、经济学以及统计学领域的核心原则和最佳实践,内容涵盖识别商业政策中的重要变量、通过实验测量这些变量,以及挖掘社交媒体以了解公众对于政策修改的反应,为从事商业数据科学的数据科学家和商业人士提供了必备工具。书中通过大量数据分析示例讲解如何利用R语言编写脚本来解决复杂的数据科学问题。