人工智能
-
深度学习与计算机视觉李晖晖,刘航本教材主要内容包括计算机视觉历史回顾与介绍、数据驱动的图像分类方式:K最近邻与线性分类器、线性分类器损失函数与很优化、反向传播与神经网络、神经网络的训练、卷积神经网络、迁移学习之物体定位与检测、卷积神经网络的可视化与进一步理解、卷积神经网络工程实践技巧、深度学习开源库使用介绍、图像分割与注意力模型、视频检测与无监督学习等。本书适合高等学校图像处理、模式识别、机器视觉、人工智能相关专业本科高年级学生和研究生使用,也可作为相关专业领域科研工作者参考书。
-
人工智能查鲁·C,阿加沃尔本书介绍了经典人工智能(逻辑或演绎推理)和现代人工智能(归纳学习和神经网络)之间的覆盖范围。分别阐述了三类方法:演绎推理方法: 这些方法从预先定义的假设开始,并对其进行推理,以得出合乎逻辑的结论。底层方法包括搜索和基于逻辑的方法。这些方法在第 1 章到第 5 章中讨论。归纳学习方法:这些方法从例子开始,并使用统计方法来得出假设。示例包括回归建模、支持向量机、神经网络、强化学习、无监督学习和概率图形模型。这些方法在第 6 章到第 11 章中讨论。整合推理和学习:第 12 章和第 13 章讨论整合推理和学习的技术。例子包括知识图谱和神经符号人工智能的使用。
-
自然语言结构计算荀恩东暂缺简介...
-
Scikit-learn机器学习高级进阶潘风文,黄春芳本书是《Scikit-learn机器学习详解》(潘风文编著)的进阶篇,讲解了Sklearn(Scikit-learn)机器学习框架的各种高级应用技术,包括数据集导入工具、集成学习、模型选择和交叉验证、异常检测、管道、 信号分解、模型持久化以及Sklearn系统高级配置。通过本书的学习,读者可快速掌握Sklearn框架的高级知识,迈入人工智能殿堂的大门。 本书适合有志于从事机器学习、人工智能技术开发的人员或爱好者使用,也可作为相关专业的教材。
-
智能移动机器人技术及应用研究刘艳暂缺简介...
-
基于多传感器融合的移动机器人算法设计与应用温欣玲,郝波基于多传感器融合的定位方法是目前移动机器人定位的主流方式。相对于单一传感器定位,多传感器融合定位具有成本低、容错率高、抗干扰能力强的优点。然而,现有的多传感器融合定位算法,无法同时兼顾定位精度和系统容错率,在融合过程中,对信息分配、信号干扰、误差模型异常等问题考虑的较少,严重的影响了机器人的定位效果。针对诸多问题,本著作主要从多传感器融合及系统构建、移动机器人融合定位算法、移动机器人导航算法、移动机器人避障路径规划算法、移动机器人障碍物检测与避障算法实施以及移动机器人室内定位与导航系统的实现方法等相关内容一一给出解答。本著作可以作为科研工作者、高校教师以及在校研究生、本科生的指导书以及算法学习参考书目。
-
人工智能软件测试技术王月春,高凌燕,张倩,吕庆本书介绍了软件测试的基本概念、原理、基本方法及测试过程等内容,包括软件测试技术概述、静态测试、黑盒测试、白盒测试、集成测试、系统测试、测试报告管理、智能软件测试以及单元测试框架Junit、压力测试工具Jmeter的使用方法,同时还介绍了软件测试与质量保证等内容。 本书为软件测试的基础教材,旨在让学生能够熟练地对实际软件进行有效测试,为后续核心课程的学习积累知识,培养学生专业技能,满足软件开发、软件测试、软件质量保障等技能要求。 本书适合作为高等院校计算机相关专业学生的教材,也可作为软件测试及软件开发人员的参考书。
-
人工智能技术导论金雷本书主要从技术原理和技术应用两方面讲述人工智能技术。全书共12章,内容涵盖人工智能概述、人工智能软硬件、人工智能与数据、计算机视觉、语音识别、自然语言理解、知识推理、经典机器学习、深度学习与强化学习、自动驾驶、智能问答及人工智能伦理等。 本书不仅可作为高等院校智能科学与技术、计算机科学、电子科学与技术、控制科学与工程等专业的低年级本科生或专科生的教材,同时也可作为人文社科类各专业本科生的通识课程教材,还可为对人工智能技术及其应用感兴趣的工程技术人员提供参考。
-
机器学习在算法交易中的应用(美)斯蒂芬·詹森人工智能时代,数字数据的爆炸式增长推动了人们对使用机器学习(ML)的交易策略相关知识的需求。《机器学习在算法交易中的应用(第2版)》就以Python为基本工具,从全局、战略的视角介绍了相关的概念,以及机器学习在交易策略设计和执行中的价值及实践运用。全书分4部分,其中第1部分主要介绍基于机器学习的交易策略的基础知识,该部分内容围绕机器学习算法以及交易策略相关的数据展开,概述了如何有效捕获数据信号内容、如何准确提取特征,以及如何基于这些数据优化算法评估投资组合。第2部分重点阐述了在端到端工作流环境中,一些基本的监督学习、无监督学习是如何为交易策略的制定提供帮助的。第3部分是自然语言处理,这部分引入了无监督学习算法,力求从文本数据这种最关键的另类数据中高质量地提取信号。第4部分通过TensorFlow和PyTorch,重点介绍深度学习和强化学习在交易策略设计中的应用。 《机器学习在算法交易中的应用(第2版)》通过大量示例,详细介绍了如何使用不同机器学习算法设计交易策略,并通过大量的数学及统计知识,帮助读者更好地理解算法调优过程及整个计算过程。特别适合想获得用于交易的机器学习算法相关知识或想设计交易策略的数据分析师、数据科学家、Python开发人员、投资分析师或投资组合经理参考学习。
-
认知规律启发的显著性物体检测方法与评测范登平《认知规律启发的显著性物体检测方法与评测》的作者范登平博士在苏黎世联邦理工学院全职从事研究工作。本书的研究内容紧密结合了人类视觉认知机制和显著性计算技术,所提出的核心技术为计算机视觉的诸多任务提供了重要的技术基础。由范博士设计的两项指标已经成为SOD领域评测模型的黄金标准,为该领域的学术共同体提供了更加全面、客观的结果。《认知规律启发的显著性物体检测方法与评测》共七章:第1章 绪论,介绍本书的研究背景并简述研究目标和主要贡献。第2章 相关工作,介绍相关工作,包括图像显著性物体检测、视频显著性物体检测、非二进制显著性物体检测评价指标和二进制显著性物体检测评价指标。第3章 富上下文环境下的显著性物体检测数据集与评测,详细介绍富上下文环境下的显著性物体检测数据集与评测,包括显著性物体检测数据集的构建和基于属性的评测。第4章 基于注意力转移机制的视频显著性物体检测,详细介绍本书提出的基于注意力转移机制的视频显著性物体检测技术、新的视频显著物体检测数据集以及模型的评测。第5章 基于结构相似性的显著性检测评价指标,详细讨论本书提出的基于结构相似性的显著性检测评价指标,并利用该评价指标对多种基于深度学习的模型进行评测。第6章 基于局部和全局匹配的显著性物体检测评价指标,讨论了本书提出的基于局部和全局匹配的显著性物体检测评价指标,该指标主要针对物体分割之后的二值显著图的评价,通过一系列元度量实验,证明了该指标*符合人眼的感知。第7章 总结与展望,总结全书并讨论未来的研究方向。