人工智能
-
手势识别技术理论及应用苗启广本书以手势识别技术理论与应用为主题,系统地介绍了该领域常用的数据集,以及基于手工特征、卷积神经网络、循环神经网络及其变种、多模态数据融合与注意力机制等实现的手势识别算法。此外,本书还结合作者的开发经验,介绍了手势识别在真实场景中的应用,旨在使读者在了解相关技术的同时提升实际应用能力。 \n本书既适合从事计算机视觉和人工智能领域研究的技术人员阅读,也可以作为高等院校相关专业师生的参考教材。 \n
-
机器人动力学与系统控制(美)安德鲁,J.库迪拉(Andrew J.Kurdila)本书重点阐述机器人系统动力学和控制的基本原理,并展示了如何计算和使用分析工具(如matlab、mathematica和maple)来进行机器人系统设计。
-
树莓派4与人工智能实战项目李伟斌 著本书主要介绍树莓派不同类型的特性,以及树莓派入门所需要的基础知识;涵盖了树莓派GPIO 的不同操作方法,以及树莓派的I2C总线、SPI总线、UART串口、PWM脉宽调制等偏硬件操作的内容; 同时也为读者准备了一些树莓派上常见的服务类型的搭建和配置,包括树莓派推流服务器搭建的方法, 常见数据库MariaDB、PostgreSQL的安装配置操作,MQTT服务器的搭建配置,DHCP服务器的搭建 配置等。此外,还加入了一些比较有趣的实验,例如利用TensorFlow实现对象检测,使用OpenCV制 作一个树莓派扫描仪,或利用OpenCV实现换鼻子的实验,带领读者了解树莓派通过摄像头能够实现 的一些应用。本书为初学者全面入门了解树莓派提供了很好的切入点,使读者可以了解更多树莓派的使用方法 以及操作小技巧。同时,在整体的编程过程中使用了C语言、Python语言及Shell脚本语言等常见语言, 对于拥有此类语言编程经验的用户更友好。希望读者能够在这里找到自己喜欢的实验,并顺利入门树莓派!
-
自动驾驶算法与芯片设计任建峰 著目前自动驾驶的一个发展趋势就是智能化。随着人工智能的飞速发展以及各种新型传感器的涌现,汽车智能化形成趋势,辅助驾驶功能的渗透率越来越高。这些功能的实现需要借助于摄像头、雷达、激光雷达等新增的传感器数据,其中视频处理需要大量并行计算。然而,传统CPU算力不足,而DSP擅长图像处理,对于深度学习却缺乏足够的性能。尽管GPU擅长训练,但它过于耗电,影响汽车的性能。因此,本书着眼于未来,认为定制化的ASIC必将成为主流。本书以自动驾驶的芯片设计为最终目标,来论述设计一个面向未来的自动驾驶SoC芯片的学术支撑和工程实践。本书共13章。其中第1章主要介绍自动驾驶目前遇到的挑战和研究方向。第2~6章重点讲述环境感知以及规划控制方面的算法设计;第7~10章重点讲述深度学习模型的优化和深度学习芯片的设计;第11章和第12章重点讲述具有安全功能的自动驾驶软件架构设计;第13章介绍5G车联网。
-
掌控Python程晨 著《掌控Python .人工智能之语音识别》围绕人工智能领域重要的语音识别技术,面向有一定Python基础的读者讲解语音识别的原理、技术发展和实现方法。 《掌控Python .人工智能之语音识别》共6章,主要内容包括语音识别概述、音频文件的可视化、人工智能和机器学习、语音转换为文本、语音反馈与交互、语音助手。
-
检索匹配康善同 著《检索匹配:深度学习在搜索、广告、推荐系统中的应用》主要介绍了深度学习在互联网核心的三大类业务(搜索、广告、推荐系统)检索系统中的应用。书中详细讲述了检索匹配的理论、演进历史,以及在业务中落地一个基于深度学习算法模型的全流程技能,包括业务问题建模、样本准备、特征抽取、模型训练和预测等,并提供了相应的代码。《检索匹配:深度学习在搜索、广告、推荐系统中的应用》共11章,分为四大部分。第1部分(第1~2章)介绍了深度学习的相关理论知识;第2部分(第3~6章)介绍了业务中如何上线一个深度学习模型,包括标签拼接、特征抽取、模型训练和预测等流程,采用单机实现;第3部分(第7~9章)介绍了检索算法基本理论以及演进历史,并以业内应用较为广泛的双塔模型DSSM为例进行了详细理论解析和代码实现;第4部分(第10~11章)介绍了如何将单机训练模式改造为分布式训练模式,以加快模型的训练速度,从而应对具有海量样本的业务场景。《检索匹配:深度学习在搜索、广告、推荐系统中的应用》为读者提供了全部案例源代码下载和超过180分钟的高清学习视频,读者可直接扫描二维码观看。《检索匹配:深度学习在搜索、广告、推荐系统中的应用》旨在为读者介绍深度学习在互联网业务中落地的方法和实现,主要面向算法工程师、相关领域研究人员和相关专业院校师生。
-
智能计算郭业才 著本书面向人工智能学科的前沿领域,系统地讨论了智能计算的原理与实现,比较全面地反映了智能计算研究和应用的*新进展。书中涵盖了支持向量机、混沌计算、蚁群算法、DNA计算、DNA遗传算法、人工免疫系统、萤火虫算法、蝙蝠算法、蛙跳算法、鱼群算法和其他一些算法及应用。全书提供了大量的实用案例,重点强调实际的应用和计算工具,这些对于智能计算领域的进一步发展是非常有意义的。 本书取材新颖、内容系统、深入浅出、材料丰富,理论密切结合实际,具有较高的学术水平和参考价值。 本书可作为人工智能、信息与通信工程、仪器科学与技术、计算机科学与技术等相关领域的科研人员及工程技术人员的参考书,也可作为研究生和高年级本科生开阔视野、增长知识的阅读材料。
-
因果论朱迪亚·珀尔(Judea Pearl) 著,刘礼,杨矫云,廖军,李廉 译本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
-
人类未来进化史[美] 詹姆斯·A.赫里克 著人人类增强运动以超人类主义为最著名和**影响力的表现形式,它有助于人类通过生物技术、神经科学和计算机科学来彻底实现精神和身体的增强。超人类主义的目标包括人类永生、人与机器的融合、人类水平的人工智能和殖民太空。关于人类增强的叙述则以即将出现的后人类物种,以及人类历史的技术巅峰——奇点为标志。本书旨在识别、解释和评估目前围绕人类增强运动和技术进步主义的中心思想而出现的有关技术超越的有远见的叙述或迷思。作者认为,技术超越的愿景将关于人类增强的叙述视为迷思,这些迷思:·支撑着技术未来的愿景,为预测技术的发展轨迹提供了“富有想象力的模式”;·展望了人类的科技救赎;·构建了对经过技术改造的后人类的未来全面而有说服力的解释;·正在塑造公众对技术、政策决策、研究进程和关于技术限制的道德辩论的期望。作者在本书探讨了不可避免的技术进步、人类的持续进化、作为信息载体的人类、后人类的崛起、世界范围的思想网络、技术不朽、展现出人类智能水平的计算机以及人类殖民太空等,为人类未来进化和未来科技的发展方向提供了一个全新的思考视角。
-
金融中的人工智能吴汉铭 著,叶伟民 译近年来,人工智能在各个领域被广泛应用,但对于很多金融从业人员来说,人工智能仍然给人一种高深莫测的感觉。本书旨在从新技术(如人工智能)的视角给出金融业务的新兴解决方案。本书内容通俗易懂,不仅揭示了人工智能在金融业中的重要性,还结合机器学习算法和示例给出了一系列的金融科技解决方案,涉及时间序列分析、强化学习、预测分析、自动化投资组合管理、情绪分析、自然语言处理等知识点。此外,本书还结合现实工作总结了相关的注意事项。本书适合传统金融行业的从业者以及新兴金融科技领域的实践者阅读。读者可从本书深入浅出的知识点和案例中了解到人工智能的魅力,为更好地运用人工智能技术赋能金融业务做好准备。