数学
-
俄罗斯数学经典(俄)伊戈尔·沙法列维奇(Igor R. Shafarevich)本书是沙法列维奇代数几何基础教程的第1卷。本书作者沙法列维奇是当代著名数学家,被誉为苏联数学三巨头之一,他建立了为世人瞩目的苏联代数几何和代数数论学派。他的代数几何基础教程(俄文版1972年初版,英文版1977年初版)问世五十多年来,历经三版修订,一直被视为一部重要的代数几何经典名著。与同类教材相比,该教程内容全面详尽,注重给出抽象理论的几何背景和起源,并配有充分反映几何本质的实例和图解。本书所需预备知识仅限于代数基础,是高年级本科生和研究生学习代数几何的首选教材。该教程的第3版分为两卷,第1卷讨论射影空间中的簇,第2卷讨论概形和复流形。
-
分析学教程 第4卷 傅里叶分析 常微分方程 变分法[英]尼尔斯·雅各布(Niels Jacob)《分析学教程.第4卷,傅里叶分析,常微分方程,变分法(英文)》是分析学课程著作的第四卷,在本卷中作者讨论了傅里叶分析、常微分方程和变分法的基础知识(一维情况下的),其中包括一些关于分析动力学的结果,即哈密顿力学。
-
基于INLA的贝叶斯推断Virgilio Gomez-Rubio积分嵌套拉普拉斯近似(Integrated Nested Laplace Approximation,INLA)是一种新的近似贝叶斯计算方法,相比传统的马尔可夫链蒙特卡罗(MCMC)方法,它可以高效地拟合多种贝叶斯模型。INLA旨在解决潜在高斯马尔可夫随机场模型参数的边际推断,利用模型中潜在变量的条件独立性来提高计算速度。 《基于INLA的贝叶斯推断》提供了便于实施模型拟合的R包及其使用指南。本书介绍了INLA算法的基本原理以及如何用与其相关的R包拟合一大类模型,涵盖的主题包括混合效应模型、多层次模型、空间和时间模型、平滑方法、生存分析、缺失值的插补,以及混合模型。本书讨论了INLA包的高级功能以及如何扩展先验和INLA包中可用的潜在模型。书中的所有例子都是完全可复现的,数据集和R代码可通过扫描封底二维码获得。 这本书的例子涵盖了生物统计学、计量经济学、教育、环境科学、流行病学、公共卫生和社会科学等主题。这将有助于来自不同领域、在贝叶斯推理方面有一定背景的研究人员,应用INLA方法解决他们工作中遇到的问题。
-
分析学教程 第2卷 多元函数的微分和积分 向量微积分[英]尼尔斯·雅各布(Niels Jacob)本书的目标是为学生和讲师提供易于理解的资料。本书是为大学二年级以上的学生设计的分析学课程的第二卷,本书包括多元函数的微分、多元函数的积分、矢量微积分三部分,本卷的目的是将一个实变量实值函数的分析扩展到从Rm到Rn的映射。
-
网络流(美)拉文德拉·阿胡亚,托马斯·马尼安提,詹姆斯·奥林本书全面介绍了经典的和现代的网络流技术,包括综合的理论、算法与应用。主要内容包括:路径、树与周期,算法设计与分析,最大流与最小流算法,分派与匹配,最小生成树,拉格朗日松弛与网络优化等。书中包含大量练习题,拓展了本书的内容,便于教学。
-
相对论量子场论[美]迈克尔·斯特里克兰(Michael,Strickland)在经典物理学中,引入场是为了构建因果和局部的物理定律,《相对论量子场论:第2卷 路径积分形式体系(英文)》以引入场为主要内容,以《相对量子场论(第一卷)》介绍的内容为基础,重新使用了现代路径积分形式,重点关注量子电动力学和色动力学的应用。全书分为8章,具体内容包括量子力学的路径积分公式、标量场的路径积分、费米子场的路径积分、阿贝尔规范场的路径积分、群与李群、量子色动力学的路径积分公式、QCD的重正化、场论中的拓扑对象、异常的有效拉格朗日量、手征性异常的摄动理论等内容。
-
菲尔兹奖得主演讲集[英]迈克尔.阿蒂亚爵士《菲尔兹奖得主演讲集.第三版(套装全2册 英文)》为我们展示的是22位菲尔兹奖获得者,提供了一个非常有趣且多样化的图像。该书内容本身代表了每个奖牌获得者自己的选择。这些内容要么是已出版作品的复制品,要么是为该书而撰写的新文章。在某些情况下,它们与获得菲尔兹奖的工作直接相关。在其他情况下,它们与奖牌获得者当前的研究兴趣有关。
-
数之简史Leo Corry 著,赵继伟、刘建新我们周围的世界充满了数字。它们是现代社会的基本支柱,我们几乎没有经过深思熟虑就接受和使用它们。但是这种情况是如何发生的呢?在本书中,Leo Corry讲述了从毕达哥拉斯时代到20世纪初的数字观念背后的故事。他概述了从古典希腊数学、伊斯兰数学、中世纪和文艺复兴时期的欧洲数学、科学革命,一直到18世纪至20世纪早期数学如何处理和构思数字的过程。本书着眼于基础辩论和实际使用数字,并展示了数字的故事如何与方程式的思想紧密联系在一起,为本科生、教师、工程师、职业数学家以及任何对数学史感兴趣的人提供了对数字的深刻见解。 本书作者Leo Corry是一位有国际声誉的现代数学史和物理学史专家。由于出自训练有素的专家之手,本书不同于由职业数学家写的数学史著作,包含大量的抽象概念和复杂的公式,也不同于一般过分重视考据的历史著作,包含太多的注解和引用,所以很适合作为大众读者深入了解数学概念和历史的通俗读物。此外,本书叙述的准确性、系统性和深度也超过现有的一般数学史著作。
-
游戏和博彩中的数学Edward Packel本书介绍和发展了各种博彩和游戏活动的理性分析中需要的一些重要而美丽的基本数学知识。大多数标准的赌场游戏(轮盘赌、21点、基诺),一些社交游戏(西洋双陆棋、扑克、桥牌)和各种其他活动(国家彩票、赛马等)都是基于呈现它们的数学层面的方式进行处理的。数学的发展范围从可预测的概率概念、期望、二项式系数到一些不太知名的基本博弈论思想。第二版新增材料包括:体育博彩和背后的数学;博弈论在扑克唬人中的应用及其与得州扑克现象的关系;Nash均衡概念及其在大众文化中的出现;互联网连接到游戏和Java小程序,用于实践和课堂使用。读者需要的正规的数学背景是一些高中代数知识。为有兴趣处理和扩展书中讨论的思想的读者准备的游戏相关的习题放在大多数章节末尾。一些习题的答案放在本书的后。
-
概率论与数理统计基础雷钦礼 李选举本书为高等学校非数学专业的概率论与数理统计教材。教材以全国硕士研究生入学考试数学一和数学三中概率论与数理统计考试大纲为编写大纲,全书分上下2编共8章,第1编概率论基础包括:随机事件与概率、随机变量及其分布、随机向量及其分布、随机变量的数字特征、大数定律与中心极限定理;第2编数理统计基础包括:样本与抽样分布、参数估计、假设检验。本教材具有实用性、基础性、趣味性的特色,可作为高等学校经济、管理、工科、农林、医药、教育、传媒等专业概率论与数理统计课程的教材,也可作为考研(数学一和数学三)学生的自学参考书。