数学
-
分析学教程 第2卷 多元函数的微分和积分 向量微积分[英]尼尔斯·雅各布(Niels Jacob)本书的目标是为学生和讲师提供易于理解的资料。本书是为大学二年级以上的学生设计的分析学课程的第二卷,本书包括多元函数的微分、多元函数的积分、矢量微积分三部分,本卷的目的是将一个实变量实值函数的分析扩展到从Rm到Rn的映射。 -
数学与文化齐民友本书分3章探讨了数学与文化的关系。作者从数学和文化起源谈起,直至它们的演变和进化。用诸多的事例,说明数学对人类文化的影响,不仅显示在现代化科学技术方面,更重要的是它表现了一种理性主义的探索精神。 -
数学与教育丁石孙 张祖贵本书分6章论述了数学与教育的关系、数学的重要性、数学教育的重要性以及数学对于教育的特殊性,进而阐明了数学所具有的一系列文化教育功能——数学的自然科学教育功能、社会科学教育功能、人文科学教育功能与思维教育功能。 -
一种基于混沌的非线性最优化问题[埃],M.A.艾尔一萨尔巴吉本书展示了一种新的混合优化方法来解决最重要的**化问题之一——非线性**化问题。本书共包含六章内容,第一章提出了**化问题的数学模型;第二章致力于介绍遗传算法的工作原理,并解释了遗传算法是如何应用到解**化问题之中的;第三章提出了解非线性**化问题的一个新算法;第四章提出了作业安排调度问题的结构,引入了作业安排调度问题的公式化;第五章的目的是实施解作业安排调度问题的新方法,并解释了它的细节;第六章为结论以及给未来研究者的几点建议。 -
中国数学史话钱宝琮 著中国数学有着悠久的历史和光辉的成就,内容非常丰富,在世界数学史上占有重要地位。本书概括性地介绍了中国古代数学的成就,包括运算、分数、方程、面积和体积、开平方、勾股定理、圆周率、四舍五入、珠算、剩余定理等,最后以“中国古代数学的特征”为题做了总结和分析。对于想了解中国古代数学的读者,是一本不可多得的著作。《史话》不同于大部头专著,短小精悍,图文并茂,对于想了解中国数学史的读者具有很强的可读性。 -
游戏和博彩中的数学Edward Packel本书介绍和发展了各种博彩和游戏活动的理性分析中需要的一些重要而美丽的基本数学知识。大多数标准的赌场游戏(轮盘赌、21点、基诺),一些社交游戏(西洋双陆棋、扑克、桥牌)和各种其他活动(国家彩票、赛马等)都是基于呈现它们的数学层面的方式进行处理的。数学的发展范围从可预测的概率概念、期望、二项式系数到一些不太知名的基本博弈论思想。第二版新增材料包括:体育博彩和背后的数学;博弈论在扑克唬人中的应用及其与得州扑克现象的关系;Nash均衡概念及其在大众文化中的出现;互联网连接到游戏和Java小程序,用于实践和课堂使用。读者需要的正规的数学背景是一些高中代数知识。为有兴趣处理和扩展书中讨论的思想的读者准备的游戏相关的习题放在大多数章节末尾。一些习题的答案放在本书的后。 -
数学证明是怎样的一项数学活动?萧文强大家在中小学课程里都会碰到某种程度的数学证明,有些人甚至把做数学与进行数学证明等同起来。但究竟数学证明这种功夫在数学活动中有何作用?它是否真正确立了无可置疑的结论?它是事后的装扮功夫抑或它能导致前所未知的新发现?这种独特的思考方式是怎样发展起来的?本书从数学史的角度出发,试以大量实例与读者探讨以上问题。 -
分析学教程 第1卷 一元实变量函数的微积分分析学介绍[英]尼尔斯·雅各布(Niels Jacob)微积分是迄今为止人类所发明的描述我们的宇宙的非常好的数学语言,没有之一,而本书就是关于这一语言的大学数学教程。《分析学教程.第1卷 一元实变量函数的微积分分析学介绍(英文)》为英文影印,中文书名或可译为《分析学教程·第1卷,一元实变量函数的微积分分析学介绍》。《分析学教程.第1卷 一元实变量函数的微积分分析学介绍(英文)》的作者有两位:一位是尼尔斯·雅各布(Niels Jacob),英国数学家,英国斯旺西大学教授;另一位是克里斯蒂安·P.埃文斯(Kristian P.Evans),也是英国数学家,英国斯旺西大学教授。我们目前生活的时代使许多大学生将互联网视为支持他们学习的主要来源,如果不是仅有来源的话,此外,许多出版商更喜欢将与各个部分直接相关的简短教科书作为数学教科书的好选择,因此,编写和出版多达6卷完整的分析学课程著作可能看起来有悖常理,甚至可能是唐吉诃德式的与现代性斗争的行为,然而,通过我们在教授本科生分析学时的观察,在过去几年中撰写这6卷的动机已经慢慢显现出来了。 -
高等复分析Barry SimonPoincaré 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第 2B 部分全面介绍了第 2A 部分未包括的若干复分析主题。这一部分介绍了共形度量理论(包括 Poincaré 度量、Ahlfors-Robinson 对 Picard 定理的证明和 Bell 对 Painlevé 光滑性定理的证明)、解析数论专题(包括 Jacobi 二平方与四平方定理、Dirichlet 素数级数定理、素数定理和分拆数的 Hardy-Littlewood 渐近)、Fuchs 微分方程理论、渐近方法(包括 Euler 方法、定常相、鞍点法和 WKB 方法)、单叶函数(包括 SLE 的介绍)和 Nevanlinna 理论。Fuchs 微分方程和渐近方法的章节可以看作关于特殊函数理论的简易课程。本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。 -
数学方法溯源欧阳绛《数学方法溯源》所说的数学方法,主要指学习和研究数学的方法,也包括把数学应用于实际的方法。数学家所走过的探索之路也往往体现了数学的方法。《数学方法溯源》一方面从数学方法的角度去探讨数学史,从活生生的数学发展中抽象出数学思想方法这根主线;另一方面,叉要立足于历史的观点去研究数学方法,即把数学方法置身于历史的背景下去分析和考察,从而充分认识其存在的理由。
