数学
-
调和分析Barry SimonPoincaré 奖得主Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第3部分讨论了点态极限(通过包含遍历定理和鞅收敛来超越通常关注的Hardy-Littlewood极大函数)、调和函数和位势论、框架和小波、[Math Processing Error] 空间(包括有界均值振荡(BMO))以及最后一章中的许多不等式,包括Sobolev空间、Calderon-Zygmund估计和超压缩半群,进而回到第1部分的主题。本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。 -
散焦NLS方程的大时间渐近性和孤子分解范恩贵,王兆钰《散焦NLS方程的大时间渐近性和孤子分解》以反散射理论、Riemann-Hilbert(RH)方法和非线性速降法为工具,系统分析散焦NLS方程在有限密度初值下解的长时间渐近性和孤子分解,主题部分取材于Cuccagna,Jerkins和作者最新研究成果。内容主要包括散焦NLS方程初值的RH问题表示、RH问题的可解性、在孤子区域中的孤子分解和在无孤子区域中的长时间渐近性。 -
序与拓扑徐晓泉本书主要从序与拓扑的交叉角度,拓展Domain理论的框架和应用范围,深入讨论sober空间、稳定紧空间与紧pospace、spectral空间与Priestley空间,系统地研究格序结构的关系表示问题,并给出关系表示理论在拓扑、Domain理论、格论中的一系列应用,尤其是一些经典拓扑问题的代数化处理新方法。由此建立了二元关系、序结构、拓扑结构的若干新联结,发展了一个用二元关系研究序结构、拓扑结构和Domain理论的新途径及方法。 -
纽结理论Charles Livingston纽结理论,作为纽结的数学的生动阐述,将吸引各种各样的读者,从寻求传统研究范围之外的经验的本科生,到想要这一学科的从容介绍的数学家。开始进一步研究计划的研究生将发现一个有价值的概述,读者不需要线性代数以外的训练就能理解书中展现的数学知识。当来自线性代数和基本群论的工具被引入来研究纽结的性质时,拓扑和代数之间的相互作用,称为代数拓扑,在书中提早出现。Livingston通过展示如何使用线性代数的技巧来解决一些复杂问题的主题(包括数学最美丽的主题之一——对称)的一般研究来引导读者。本书最后讨论了高维纽结理论,并介绍了该学科的一些最新进展——Conway, Jones和Kauffman多项式。补充部分介绍了作为代数拓扑核心的基本群。 -
非线性偏微分方程分析讲义 第六卷Jean-Yves Chemin, Fa本书收集了 2019 年至 2021 年在中国科学院数学与系统科学研究院晨兴数学中心和调和分析及其应用研究中心举办的“偏微分方程的分析方法”讨论班的部分邀请报告。本书共有 7 篇讲义,包括 Hajer Bahouri 教授等关于泡和波阵面分解方法,Rapha?l Danchin 教授关于具有间断密度的非齐次不可压缩 Navier-Stokes方程,以及 Reinhard Farwig 关于 Navier-Stokes 方程弱解的和几乎初值等内容。这些讲义在一定程度上反映了近年来在偏微分方程领域的一些进展及其展望。本书可以作为从事非线性偏微分方程的科研人员和教师的学习和参考用书。 -
康托尔的无穷的数学和哲学[美]周·道本(Darben.J.W.)著;郑毓信 刘晓力 编译康托,数学史上富于想象力,也有争议的人物之一。有人认为他是19世纪伟大的学者之一,有人认为他是科学的骗子与叛徒。多少年来,康托的名字就意味着论战和对立。《康托的无穷的数学和哲学》集中于康托的数学理论,特别是他的集合论和超穷数理论创立的背景、发生和发展的考查上。《康托的无穷的数学和哲学》试图记录一个不平凡智力活动的主脉,并在某种程度上做出一些心理动力学的分析,以此表明一个新理论如何产生,为什么会产生,它所面临的问题,以及最终为什么会演变为科学理论体系的一部分。 -
Nabla离散分数阶系统卫一恒《Nabla离散分数阶系统:分析与控制》是一部系统地介绍Nabla离散分数阶系统理论的专著,其中包含了许多原创性成果和未解问题.针对Nabla离散分数阶系统,《Nabla离散分数阶系统:分析与控制》讨论了其稳定性分析和控制器设计问题,为了便于验证所提理论,还介绍了数值实现方法.《Nabla离散分数阶系统:分析与控制》由浅入深、循序渐进地展开,虽不是字斟句酌的教科书,但所给出的结论均提供了巧妙且严谨的证明,既介绍了灵感来源,提供了文献出处,又对结论的特性和价值进行了剖析,提供了针对性的数值算例.《Nabla离散分数阶系统:分析与控制》所列彩图均可扫描封底二维码进行查看.《Nabla离散分数阶系统:分析与控制》力求通俗易懂、简洁实用,从问题到方法,从算例到应用,前后呼应,自成体系,是分数阶爱好者的佳肴. -
微分几何Wolfgang Kühnel, Tra这本精心编写的教材介绍了微分几何的美妙思想和结果。前半部分涵盖了曲线和曲面的几何,它们为一般理论提供了很多动力和直觉。第二部分研究一般流形的几何,特别强调联络和曲率。书中附有许多图表和示例。阅读本书之前需要先学习本科的数学分析和线性代数。新版做了很多修订,包括更多的图表和习题,并新增了很多精选习题的解答。 这个新版本是一个提升改进的版本,而上一版已经是关于微分几何和黎曼几何的优秀入门教材了。除了各种修订,作者还新增了许多问题的解答,以使本书更适合课堂使用。 —Colin Adams, Williams College Kühnel 的这本关于微分几何的书是对该主题的极好和有用的介绍。 ……关于微分几何有很多不同的观点,也有很多通往其概念的路径。本书提供了一个出色的、令人兴奋且优美的基础,可以用来探索这个深刻而基础的数学主题。 —Louis Kauffman, University of Illinois at Chicago -
数学与哲学张景中本书分11章探讨了数学与哲学上的许多问题。如变与不变、数与量、相同与不同、事物变化的连续性等等,既阐述了数学与哲学这两大学科各自的特点,又从多方面论述了哲学研究与数学研究的密不可分性;以生动的实例说明了哲学家是如此重视数学,而数学又始终在影响着哲学。在研究了古代和当代的主要哲学家和数学诸流派的各种观点之后,作者讲述了自己的许多独到的见解。第11章,“数学与暂学随想”,是作者多年来研究的心得与体会。 -
Riemann曲面的模空间Benson Farb,Richard映射类群和Riemann曲面的模空间是2011年IAS/帕克城数学研究所研究生暑期班的主题。本书介绍了组成暑期学校的9个不同的讲座系列,涵盖了当前兴趣的精选主题。导论课程处理映射类群和Teichmüller理论。更高级的课程包括模空间的相交理论,多边形台球和模空间的动力学,映射类群的稳定上同调,Torelli群的结构和算术映射类群。该课程由该领域的专家提供的一系列密集的短讲座组成,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课程不重复。本书是对Riemann曲面的模空间的拓扑、几何和动力学以及相关主题感兴趣的研究生和研究人员的宝贵资源。
