数学
-
几何基础David Hilbert《几何基础》是数学大师希尔伯特的一部名著,首次发表于1899年,该书第一次给出了完备的欧几里得几何公理系统。全体公理按性质分为五组(即关联公理、次序公理、合同公理、平行公理和连续公理),他对它们之间的逻辑关系作了深刻的考察,精确地提出了公理系统的相容性、独立性与完备性要求。为解决独立性问题,他的典型方法是构作一个模型,不满足所论的公理,但却满足所有其他公理。采用这种途径可赋予非欧几何以严密的逻辑解释,同时开拓了建立其他新几何学的可能性。对于相容性问题,他的重大贡献是借助于解析几何而将欧氏几何的相容性归结为初等算术的相容性。上述工作的意义远超出了几何基础的范围,而使他成为现代公理化方法的奠基人。 -
埃尔朗根纲领(德)F.克莱因 著;何绍庚,郭书春 译F.克莱因在他提出的著名的《埃尔朗根纲领》中,以变换群的观点综合了各种几何的不变量及其空间特性,以此为标准来分类,从而统一了几何学。 -
工时可变的排序模型与算法张新功在排序问题的研究中, 一方面问题模型求解方法的多样性, 另一方面实际的生产和服务需求使得问题新模型不断涌现, 使得经典排序的基本假设被不断突破. 工时可变的排序问题, 是一类非常重要的非经典排序问题.本书介绍了工时可变排序问题的重要性和现实意义, 介绍了三类工时可变的排序问题, 以及在重新排序中的应用. 本书介绍了基本方法、理论和基础知识, 阐述了时间相关的排序问题、工期相关的排序问题、工件加工时间之和相关的排序问题, 以及重新排序在学习或者退化效应中的应用. 研究技术和内容涉及成组技术、资源约束分配、窗时排序、准时排序以及拒绝费用限制等相关的排序模型、问题特性、复杂性分析和优化算法. -
数学奇趣[美国][美]阿尔弗雷德?S.波萨门蒂 著,涂泓 译,冯承天 译校这本书中提供了大量的趣味数学例子,包括几何、代数、概率、逻辑,以及其他一些领域。我们可以用不寻常但令人惊叹的数学知识逗乐大家。其中一些例子可能非常简单,甚至什么都不需要解释就可以达到目的。还有一些例子会被认为很了不起,它们能够引导读者真正欣赏数学,因为也许他们在学生时代没能意识到这一点。通过这些简短的例子,我们希望能让你感受到数学领域所能提供的许多意想不到的和违反直觉的乐趣。 -
分析中的多值映射[俄]鲍里斯·格利曼本书是一部版权引自俄罗斯的俄文版数学专著,中文书名可译为《分析中的多值映射:部分应用》。本书作者是鲍里斯.格利曼,俄罗斯人,物理和数学科学博士,毕业于沃罗涅日国立大学,现在沃罗涅日国立大学函数和几何学理论教研室教授。 -
相对论量子场论[美]迈克尔·斯特里克兰(Michael,Strickland)在经典物理学中,引入场是为了构建因果和局部的物理定律,《相对论量子场论:第2卷 路径积分形式体系(英文)》以引入场为主要内容,以《相对量子场论(第一卷)》介绍的内容为基础,重新使用了现代路径积分形式,重点关注量子电动力学和色动力学的应用。全书分为8章,具体内容包括量子力学的路径积分公式、标量场的路径积分、费米子场的路径积分、阿贝尔规范场的路径积分、群与李群、量子色动力学的路径积分公式、QCD的重正化、场论中的拓扑对象、异常的有效拉格朗日量、手征性异常的摄动理论等内容。 -
一个应用数学家的辩白[美]劳埃德·尼克·特雷费森(Lloyd Nick Trefethen)本书是数值分析家劳埃德·尼克·特雷费森教授的心得之作。除了回顾早期学习数学的成长过程,以及深耕数值分析领域的心路历程,本书还体现了特雷费森教授对数学本身的深刻思考、对纯数学和应用数学的真切感悟,以及对数学所面临的挑战的反思。 本书适合对数学史、数学思想和数学教育,以及纯数学和应用数学感兴趣的所有读者。 -
信用货币理论原理阿铭本书是信用货币理论在国际范畴的应用。本书从当前以美元为核心的国际货币制度造成的问题开始,在第一章分析为什么现有的国际货币制度必须改变,在随后的几章中从货币区、国际货币制度、汇率、国际收支等几个方面分析应如何看待和改革国际货币制度,并在最后一章提出三种国际货币制度改革的路径,最后一节对未来的国际货币制度做了展望。 -
唐吉诃德+西西弗斯刘培杰数学工作室本丛书为您介绍了数百种数学图书的内容简介,并奉上名家及编辑为每本图书所作的序、跋等。本丛书旨在为读者开阔视野,在万千数学图书中精准找到所求著作,其中不乏精品书、畅销书。本书为其中的格物致知集。本丛书适合数学爱好者参考阅读。 -
数学分析应该这样学【英】劳拉·阿尔柯克数学分析(涵盖高等数学A、高等微积分和实分析)是大多数理科类本科专业必修的基础科目。《数学分析应该这样学》分为两部分,部分讲解什么是高等数学,以及高等数学如何从定义和公理出发,以证明为手段搭建一致的数学理论,同时为同学们制定了Z优的高等数学学习策略,并告诉同学们如何在心理上应对初学阶段难免的挫折感;第二阶段以深入浅出的方式讲解高等数学中的关键核心概念,包括序列、极限、连续、可微、可积和实数等,为学生的后续学习打下坚实的基础。这本书还提供了学习建议,尤其是能让学生成功学习数学分析的技能,让刚接触高等数学的学生很容易理解和接受。
