数学
-
纽结理论Charles Livingston纽结理论,作为纽结的数学的生动阐述,将吸引各种各样的读者,从寻求传统研究范围之外的经验的本科生,到想要这一学科的从容介绍的数学家。开始进一步研究计划的研究生将发现一个有价值的概述,读者不需要线性代数以外的训练就能理解书中展现的数学知识。当来自线性代数和基本群论的工具被引入来研究纽结的性质时,拓扑和代数之间的相互作用,称为代数拓扑,在书中提早出现。Livingston通过展示如何使用线性代数的技巧来解决一些复杂问题的主题(包括数学最美丽的主题之一——对称)的一般研究来引导读者。本书最后讨论了高维纽结理论,并介绍了该学科的一些最新进展——Conway, Jones和Kauffman多项式。补充部分介绍了作为代数拓扑核心的基本群。
-
矩阵理论刘启明 编本书比较全面、系统地介绍了矩阵的理论、方法及其应用。全书分别介绍了线性空间与线性变换、欧氏空间与酉空间理论、向量与矩阵的范数理论及应用、矩阵分析与应用、矩阵的分解与特征值的估计、广义逆矩阵、特殊矩阵等内容。附录部分包括一元多项式理论、多元函数理论、基于MATLAB的矩阵运算。各章配有一定数量的习题。本书可作为工科院校高年级本科生和研究生的教材,也可作为相关专业的教师及工程技术人员的参考书。
-
矩阵之美耿修瑞《矩阵之美·基础篇》从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
-
钱敏数学文选 数学家钱敏精选文集北京大学数学科学学院钱敏先生1927年3月出生于江苏无锡。1944年至1946年就读于成都金陵大学,1946年至1949年就读于清华大学,1949年毕业后留校担任助教。1950年至1951年到北京大学学习,1951年至1952年任燕京大学助教,1952年入职北京大学,先后担任讲师、副教授、教授、博士生导师,1997年6月退休。2019年逝世。钱敏先生在教书育人方面倾注了大量心血,在科研方面探索不断,与人共同提出马氏过程的环流理论及熵产生的概率定义。2013年荣获中国数学会第十一届华罗庚数学奖。《钱敏数学文选》收录钱敏先生代表性的学术论文若干,选目见附件。
-
微分几何Wolfgang Kühnel, Tra这本精心编写的教材介绍了微分几何的美妙思想和结果。前半部分涵盖了曲线和曲面的几何,它们为一般理论提供了很多动力和直觉。第二部分研究一般流形的几何,特别强调联络和曲率。书中附有许多图表和示例。阅读本书之前需要先学习本科的数学分析和线性代数。新版做了很多修订,包括更多的图表和习题,并新增了很多精选习题的解答。 这个新版本是一个提升改进的版本,而上一版已经是关于微分几何和黎曼几何的优秀入门教材了。除了各种修订,作者还新增了许多问题的解答,以使本书更适合课堂使用。 —Colin Adams, Williams College Kühnel 的这本关于微分几何的书是对该主题的极好和有用的介绍。 ……关于微分几何有很多不同的观点,也有很多通往其概念的路径。本书提供了一个出色的、令人兴奋且优美的基础,可以用来探索这个深刻而基础的数学主题。 —Louis Kauffman, University of Illinois at Chicago
-
Riemann曲面的模空间Benson Farb,Richard映射类群和Riemann曲面的模空间是2011年IAS/帕克城数学研究所研究生暑期班的主题。本书介绍了组成暑期学校的9个不同的讲座系列,涵盖了当前兴趣的精选主题。导论课程处理映射类群和Teichmüller理论。更高级的课程包括模空间的相交理论,多边形台球和模空间的动力学,映射类群的稳定上同调,Torelli群的结构和算术映射类群。该课程由该领域的专家提供的一系列密集的短讲座组成,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课程不重复。本书是对Riemann曲面的模空间的拓扑、几何和动力学以及相关主题感兴趣的研究生和研究人员的宝贵资源。
-
齐次马尔科夫过程建模的矩阵方法[俄罗斯] 鲍里斯·泽连措夫 著《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善(俄文)》是一部俄文版的概率论专著,中文书名或可译为《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善》。该书作者为鲍里斯·泽连措夫,俄罗斯人,技术科学博士,西伯利亚国立电信与信息大学(新西伯利亚)高等数学教研室教授,主要研究方向为复杂概率系统的数学模拟。该书提出了离散时间和连续时间的马尔科夫过程模型,在其基础上,计算了瞬态和稳态下的状态子集和状态的概率、时间和频率特征,并提出了两种扩大状态的途径:利用子集的边界状态和基于子集之间的转移频率,该书可供解决复杂系统建模问题的工程师和设计师,以及相关专业的学生和科研人员使用。
-
p 进数冯克勤本书共分五章。第一章介绍有理数域的p进赋值,给出衡量有理数大小和距离的各种不同尺度。第二章讲述p进数域,这是有理数域对p进赋值的完备化域。介绍了在p进数域中解代数方程和多项式分解的“新奇”结果和p进分析的基本工具:亨泽尔引理和牛顿折线。第三章介绍用p进分析工具研究数论问题的一个精彩例子,即研究多元二次方程的有理数解的哈塞定理。第四章介绍p进数域上的各种连续函数:p进的指数函数、对数函数、zeta函数和gamma函数,以及它们的数论意义。最后一章介绍p进积分理论。 此外,书中讲述了p进分析的用途,主要在数论研究中所起的作用,指出了在物理等其他学科的应用前景。
-
多赋范空间和广义函数.理论及应用[白俄]尤里.武武尼基场《多赋范空间和广义函数.理论及应用(俄文)》是一部俄文原版的有关泛函分析和广义函数方面的数学专著,中文书名可译为《多赋范空间和广义函数.理论及应用(俄文)》。作者为尤里·武武尼基杨,他是白俄罗斯人,数学物理科学博士,在白俄罗斯格罗德诺市的格罗德诺国立大学基础和应用数学教研室担任教授。
-
线性代数[美] 史蒂文·J.利昂(Steven J. Leon),[美] 莉塞特·G.德·皮利什(Lisette 著,张文博,张丽静 译本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值、数值线性代数和标准型等.为帮助读者巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题.本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书.