数学
-
数学与思维徐利治 王前从数学与左脑思维,数学与右脑思维、数学研究与左右脑的配合三个方面,精辟地论述了数学研究中思维的作用,数学思维的特性和它的各个侧面(抽象性,形式化与心理化,想象、猜测和直觉的重要性等),以及各种思维形式的综合使用能力。书中还讨论了数学思维的一些具体规则和方法。
-
p 进数冯克勤本书共分五章。第一章介绍有理数域的p进赋值,给出衡量有理数大小和距离的各种不同尺度。第二章讲述p进数域,这是有理数域对p进赋值的完备化域。介绍了在p进数域中解代数方程和多项式分解的“新奇”结果和p进分析的基本工具:亨泽尔引理和牛顿折线。第三章介绍用p进分析工具研究数论问题的一个精彩例子,即研究多元二次方程的有理数解的哈塞定理。第四章介绍p进数域上的各种连续函数:p进的指数函数、对数函数、zeta函数和gamma函数,以及它们的数论意义。最后一章介绍p进积分理论。 此外,书中讲述了p进分析的用途,主要在数论研究中所起的作用,指出了在物理等其他学科的应用前景。
-
实分析Barry SimonPoincaré 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第1部分致力于实分析。从一个角度来看,它将20世纪的微积分与极限积分(测度理论)和极限微分(分布理论)结合起来。另一方面,它展示了抽象空间的胜利:拓扑空间、Banach和Hilbert空间、测度空间、Riesz空间、Polish空间、局部凸空间、Fréchet空间、Schwartz空间和 L^(p )空间。最后是对大技巧的研究,包括Fourier级数和变换、对偶空间、Baire范畴、不动点定理、概率思想和Hausdorff维数。应用包括无处可微函数的构造、Brown运动、空间填充曲线、矩问题的解、Harr测度和势理论中的平衡测度。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
-
非线性偏微分方程分析讲义 第六卷Jean-Yves Chemin, Fa本书收集了 2019 年至 2021 年在中国科学院数学与系统科学研究院晨兴数学中心和调和分析及其应用研究中心举办的“偏微分方程的分析方法”讨论班的部分邀请报告。本书共有 7 篇讲义,包括 Hajer Bahouri 教授等关于泡和波阵面分解方法,Rapha?l Danchin 教授关于具有间断密度的非齐次不可压缩 Navier-Stokes方程,以及 Reinhard Farwig 关于 Navier-Stokes 方程弱解的和几乎初值等内容。这些讲义在一定程度上反映了近年来在偏微分方程领域的一些进展及其展望。本书可以作为从事非线性偏微分方程的科研人员和教师的学习和参考用书。
-
偏微分方程的移动网格方法汤涛,李若,张争茹本书介绍了移动网格方法的历史和现状,作者根据这几年对移动网格方法的一些研究体会,写成此书。本书研究的移动网格方法要做的就是保持单元或节点数不变而通过重新分布节点位置实现自适应目标。特别地,我们将把动态网格与求解过程结合起来,用最适合求解问题的方式来生成网格,即在解的梯度大的地方网格自动加密,而在解的梯度小的地方网格自动变稀疏,其基本目标是改进计算精度,并使数值误差分布趋于均匀。本书侧重自适应网格技术,在流体计算、相场界面问题、双曲守恒律方程等问题上都有成功的应用。本书易读性强,深入浅出,提供代码,使读者容易上手实践。
-
Nabla离散分数阶系统卫一恒《Nabla离散分数阶系统:分析与控制》是一部系统地介绍Nabla离散分数阶系统理论的专著,其中包含了许多原创性成果和未解问题.针对Nabla离散分数阶系统,《Nabla离散分数阶系统:分析与控制》讨论了其稳定性分析和控制器设计问题,为了便于验证所提理论,还介绍了数值实现方法.《Nabla离散分数阶系统:分析与控制》由浅入深、循序渐进地展开,虽不是字斟句酌的教科书,但所给出的结论均提供了巧妙且严谨的证明,既介绍了灵感来源,提供了文献出处,又对结论的特性和价值进行了剖析,提供了针对性的数值算例.《Nabla离散分数阶系统:分析与控制》所列彩图均可扫描封底二维码进行查看.《Nabla离散分数阶系统:分析与控制》力求通俗易懂、简洁实用,从问题到方法,从算例到应用,前后呼应,自成体系,是分数阶爱好者的佳肴.
-
与中学生谈谈代数Igor R. Shafarevich欧几里得几何以其美丽、优雅和内在的逻辑性吸引了无数人。俄罗斯代数学家Igor R. Shafarevich是20世纪的一位数学领军人物,同时也是一位极优秀的数学普及作家。1943年以后,他一直在苏联科学院斯捷克洛夫数学研究所工作;1958年,他被选为苏联科学院通讯院士。他在本书中以丰富的例证表明,代数在这几方面丝毫不比几何逊色。 本书阐述了代数、数论、集合论和概率论的若干基本内容,却只需要很少的预备知识。本书可作为中学生的拓展阅读材料,也可作为中学数学教师的参考用书。
-
康托尔的无穷的数学和哲学[美]周·道本(Darben.J.W.)著;郑毓信 刘晓力 编译康托,数学史上富于想象力,也有争议的人物之一。有人认为他是19世纪伟大的学者之一,有人认为他是科学的骗子与叛徒。多少年来,康托的名字就意味着论战和对立。《康托的无穷的数学和哲学》集中于康托的数学理论,特别是他的集合论和超穷数理论创立的背景、发生和发展的考查上。《康托的无穷的数学和哲学》试图记录一个不平凡智力活动的主脉,并在某种程度上做出一些心理动力学的分析,以此表明一个新理论如何产生,为什么会产生,它所面临的问题,以及最终为什么会演变为科学理论体系的一部分。
-
改变世界的17个方程[英]伊恩·斯图尔特方程是世界的基本法则,改变了人类的命运,从波动方程、麦克斯韦方程组,到用于预测金融市场的布莱克?C斯科尔斯方程,方程在生活中无处不在。毕达哥拉斯定理如何催生全球卫星定位系统?对数如何在建筑学中发挥应用?虚数为何对数码相机的发展至关重要?薛定谔的猫到底发生了什么?……本书选取17个对人类社会产生重要影响的方程,以生动有趣的笔触讲述了它们背后的历史故事,以及它们如何推动了人类文明的发展,并从数学的角度对地球万物进行了独创性的探索与阐释。
-
数学家的故事尹逊波本书用简洁的文字介绍了50位数学家的主要经历、学术成就、治学态度和治学方法。其中,包括29位中国的数学家和21位国外数学史上有代表性的数学家。本书挖掘的重点立足于以下两方面:对于国内数学家,在介绍其个人成长经历的同时,更重视介绍其突出成果及贡献,增强学生的爱国热情和民族自豪感。对于国外数学家,重点放在其个人成长中正能量的元素,突出其人生观、世界观及价值观中对学生有启示的方面。本书特色在于融入近几年课程思政、数学文化及新工科教学改革的相关成果,既有深度,又有广度和温度。本书是数学学习的补充读物,也是数学思政的参考书。既可以供大中小学学校师生参考,又可供广大数学爱好者阅读。