数学
-
KAM的故事H.S.杜马斯 著,程健 译这是一本半大众化的数学书,面向具有一定数学素养的科学家,特别是非经典力学或非KAM理论方面的数学家和物理学家,以及具有科学思维的读者。对于那些缺少数学训练,但对科学哲学和科学历史感兴趣的读者,本书也颇具吸引力。本书涵盖的内容很广:不但详细描述了KAM理论,还介绍了其历史背景(从而表明了它为什么是一个“突破”)。书中也讨论了KAM理论的应用(特别是在天体力学和统计力学上),以及所涉及的数学和物理部分(动力系统、经典力学和Hamilton摄动理论)。尽管现在有许多有关KAM理论的资料可供专家使用,但本书试图以更为生动的方式填补长期存在的空白。不同于现有的相关图书,本书通俗易懂,并将KAM理论放到数学、物理和科学史的适当背景下讨论。 -
从分析解题过程学解题赵小云 著暂缺简介... -
随机微分方程导论Lawrence C.Evans 著这本简短的书为随机微分方程(即受加性“白噪声”和相关随机扰动影响的微分方程)提供了一个快速但易读的介绍,叙述简明扼要,重点放在概率直觉和数学严格性之间的相互作用上。本书首先对基于测度的概率论进行快速概述,然后介绍Brown运动和It?随机分析,最后是随机微分方程的理论。书中还包括偏微分方程、**停止问题和期权定价的应用。 本书可作为希望学习随机微分方程基础知识的数学、应用数学、物理学、金融数学等专业的高年级本科生或低年级研究生的教科书。本书假定读者对基于测度的数学分析相当熟悉,但不要求读者具备任何概率论(本书第二章将快速回顾)的特定知识。 -
分数阶微分方程理论与应用[白俄罗斯] A.A.基尔巴斯 著本书共8章,包括:预备知识,分数阶积分与分数阶导数,分数阶常微分方程、存在唯一性定理,求分数阶微分方程明显解的方法,求分数阶微分方程明显解的积分变换法,分数阶偏微分方程,分数阶序贯线性微分方程,分数阶模型的进一步应用。 本书适合数学专业人员及数学爱好者参考使用。 -
工科应用数学刘继杰,白淑岩 著本教材以教育部《关于全面提高高等职业教育教学质量的若干意见》为指导,以“应用为目的,专业够用为度,学有所需,学有所用”的定位原则,在充分研究了当前我国高职教育现状的基础上修订而成的。全书分为上、下两册,共12章.上册主要内容为函数与极限、导数与微分、导数应用、不定积分、定积分,下册主要内容为常微分方程、无穷级数、行列式与矩阵、向量与空间解析几何、拉普拉斯变换、离散数学、多元微积分. 书末附有数学文化阅读。本书的典型例题配有视频讲解,读者可通过扫书中二维码及时获取。本书可作为高职高专院校理工类专业的数学基础课教材,也可作为成人高校及其他职业学校的参考教材. -
Apostol微积分 第1卷[美] T.M.阿普斯托 著Apostol的名著《微积分》教材分为第1卷和第2卷两卷,第1卷主要讲述单变量微积分,第2卷讲述多变量微积分。本书整体是按照微积分和解析几何的历史发展和科学发展的方式进行处理的。例如,先讲积分,再讲微分。这种处理方式尽管有点不符合常规,但从历史的角度和教学上来说则更加理想。 第1卷:主要内容为单变量微积分及线性代数引入。包括:历史发展;集合论的基本观点;实数系的公理化;积分的概念;积分的应用;连续函数;微积分;积分和微分的关系;对数、指数和反三角函数;函数的多项式逼近;微分方程引入;复数;序列、无限级数和反常积分;函数序列和级数;向量代数;向量代数在解析几何中的应用;向量值函数的微积分;线性空间;线性变化和矩阵 -
几何迭代法及其应用蔺宏伟 著本书是对几何迭代法目前研究进展的总结。全书分5章。第1章介绍了几何设计的基本概念和基本方法。第2章阐述了插值型几何迭代法的迭代格式和收敛性分析。第3章给出了几何迭代法的局部性质。第4章讲述了逼近型几何迭代法。最后,第5章展示了几何迭代法在几何设计、逆向工程、数据拟合及网格处理等方面的应用。 -
非欧几何,第六版H.S.M.Coxeter 著贯穿本书大部分内容的二维或三维空间的非欧几何,被视为与一组简单公理相关的、实射影几何的特例,这组公理涉及点、线、面、关联、序和连续性,未涉及距离或角度的测量。综述之后,作者从Von Staudt的思想——将点视为可以相加或相乘的实体——出发,引入齐次坐标。保持关联的变换称为直射变换,它们自然地导出等距同构或“全等变换”。遵循Bertrand Russell的建议,连续性用序来描述。通过特殊化椭圆或双曲配极——将点变换为线(二维)、面(三维),反之亦然——椭圆和双曲几何可从实射影几何派生而来。本书的一个不同寻常的特点是,它利用一般的线性坐标变换,来推导椭圆和双曲三角函数的公式。根据Gauss的巧妙想法,三角形面积与其角度之和有关。任何熟悉代数乃至群论基础的读者都可以从本书获益。第六版澄清了第五版的一些晦涩之处,新增的15.9节包含了作者非常有用的反演距离的概念。同世界知名教授H. S. M. Coxeter相比,没有哪个在世的几何学家可以把困难的题目写得更清晰、更优美。当非欧几何学第一次被提出时,它似乎仅仅关乎与现实世界毫无关系的好奇心。而令所有人惊讶的是,它竟然对爱因斯坦广义相对论至关重要!Coxeter的书绝版太久了,向MAA再版这本经典著作脱帽致敬。—Martin GardnerCoxeter的几何书籍是不应被丢失的珍品。我很高兴看到《非欧几何》重新出版。—Doris Schattschneider -
Hilbert第五问题及相关论题Terence Tao 著Hilbert著名的23个问题的第5个问题为:是否每个局部Euclid拓扑群实际上都是Lie群。通过Gleason、Montgomery-Zippin、 Yamabe等人的工作,这个问题得到了肯定的回答;更一般地,他们建立了局部紧群令人满意的(介观)结构理论。随后,这种结构理论被用来证明Gromov关于多项式增长群的定理,也用在最近Hrushovski、Breuillard、Green和作者关于近似群结构的工作中。 本书所有材料以统一的方式呈现,从实Lie群和Lie代数的分析结构理论(强调单参数群的作用和Baker-Campbell-Hausdorff公式)开始,然后给出局部紧群的Gleason-Yamabe结构定理的证明(强调Gleason度量的作用),由此得到Hilbert第五问题的解答。在回顾了一些模型论基础知识(特别是超积理论)之后,作者给出了Gleason-Yamabe定理在多项式增长群和近似群中的组合应用。本书还提供了大量相关练习和其他补充材料供读者参考。 -
从三角形内角和谈起虞言林 著本书以Atiyah-Singer指标定理为主线,用浅显易懂的语言,从三角形内角和定理出发,深入浅出地介绍了经典的Gauss-Bonnet公式、Riemann-Roch定理及其高维的推广、同调理论,特别是de Rham上同调、层的上同调、陈省身-Weil理论等,同时还介绍了这些数学珍品产生的历史背景。本书是相关理论的一本很好的入门参考书,可供数学系高年级学生、相关专业的研究生及青年数学工作者学习使用。
