数学
-
发育生物学中的数学模型Jerome,K.Percus St 著从卵细胞发育成完整生物体的过程,是生命科学最吸引人的轨迹之一,其复杂性要求有极高的组织度,并伴有一系列相互间持续通信的子过程。本书介绍了过去几十年在发育生物学进展中**代表性的数学模型,以及为求解这些模型而发展的技术。这些模型提供了一种以简洁形式整合可靠数据的有效途径,给出了一种与分子生物学技术互补的方法,并为未来的研究提供信息和指导。本书可供对生物数学感兴趣的研究生阅读,也是相关数学研究人员的极好参考资料。 -
双曲型偏微分方程和几何光学Jeffrey Rauch 著本书介绍了双曲型方程的方方面面,这类方程特别适合描述以有限速度传播的波。本书的主题包括非线性几何光学、短波长解的渐近分析以及此类波的非线性相互作用。作者详细论述了波的阻尼、共振、色散衰减、由共振相互作用引起的密集振荡的可压缩 Euler 方程的解。许多基本结果首次以教科书的形式呈现。除密集振荡外,本书还处理了传播的精确速度及三波相互作用方程组的存在性和稳定性等问题。本书的特色之一是其关注提出思想和证明的动机,展示它们如何从相关的更简单情形演进而来。本书还提供了大量习题供读者进行练习。作者是密歇根大学的数学教授,偏微分方程知名专家,为双曲型偏微分方程的三个领域(非线性微局部分析、波的控制和非线性几何光学)的变革做出了重要贡献。本书可供对双曲型偏微分方程感兴趣的研究生和研究人员使用参考。 -
应用数学王妍、斯日古冷、吴桂兰、王永庆、李安楠本书的主要内容包括函数的极限与连续、导数与微分及其应用、不定积分与定积分及其应用等。本书突出“数学为根本,应用为导向”的特点,内容难度适宜,语言通俗易懂,逻辑清晰。本书每节重点内容均配套微课讲解视频,每章附有详细的思维导图,梳理脉络,易教利学。每节后附有“基础训练”与“提升训练”分层练习,每章结束配套总结提升习题,同时提供参考答案。本书配套习题题型丰富,满足学生参加高等教育自考、专升本等进一步的升学要求。本书可作为高职公共基础课教材使用,也可供感兴趣的读者阅读参考。 -
高等数学大连理工大学数学科学学院,张宏伟,金光日 著本书分上、下两册. 上册主要内容包括函数、极限与连续,一元函数微分学及其应用,一元函数积分学及其应用和微分方程。下册主要内容包括无穷级数,向量代数及空间解析几何,多元函数微分学及其应用,多元数量值函数积分学及其应用和多元向量值函数积分学及其应用等。为便于读者学习,每一章后面都配有精心选取的习题,绝大部分习题都附有参考答案及提示。本书适用于高等学校理工科非数学类各专业的学生学习和使用,可作为教材或教学参考书,也可供工程技术人员参考。 -
矩阵半张量积讲义 卷二程代展,齐洪胜 著矩阵半张量积是近二十年发展起来的一种新的矩阵理论。经典矩阵理论的*大弱点是其维数局限,这极大地限制了矩阵方法的应用。矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为跨越维数的矩阵理论。《矩阵半张量积讲义》的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍。计划出五卷。卷一:基本理论与多线性运算;卷二:逻辑系统的分析与控制;卷三:有限博弈的矩阵方法;卷四:泛维数动力系统;卷五。。矩阵半张量积的其他应用。《矩阵半张量积讲义》是对这个快速发展的学科分支做一个阶段性的小结,以期为其进一步发展及应用提供一个规范化的基础。 《矩阵半张量积讲义.卷二 ,逻辑动态系统的分析与控制》是《矩阵半张量积讲义》的第二卷。《矩阵半张量积讲义.卷二 ,逻辑动态系统的分析与控制》所需要的预备知识仅为大学本科工科专业的数学知识,包括线性代数、微积分、常微分方程、初等概率论。相关的线性系统理论及点集拓扑、抽象代数、微分几何等的初步概念已在卷一附录中给出。读者亦可略过相关部分,这些不会影响对《矩阵半张量积讲义.卷二 ,逻辑动态系统的分析与控制》基本内容的理解。 -
基于学科融合的初中数学项目学习设计傅兰英本书的内容主要是从数学的角度观察与分析、思考与表达、解决与阐释社会生活,以及在科学技术中遇到的现实问题,符合初中阶段综合与实践领域的要求.从提出问题、分析问题、解决问题、评价的角度体现了项目学习的实施流程和原则,为初中数学项目学习指明了大方向,具有科学性、实用性等特点.本书可作为初中数学教师教学参考用书,也可作为高等师范院校的全日制本科生、研究生、教育硕士使用的项目学习教材或参考书,也适用于教研员、中小学数学爱好者参考使用. -
微分方程的建模与计算/保继光教授团队作品保继光,李娅 著本书图文并茂地叙述了微分方程的基本概念、著名实例、重要模型、发展历史,讲授了常微分方程求解的初等积分法和待定系数法,偏微分方程求解的特征线法、变量变换法、积分变换法、行波法、延拓法、分离变量法、Green函数法和变分方法,介绍了求解方程的数学软件Mathematica,全书内容共由十二章组成.同时,本书给出了作业详细完整的答案,读者扫描每章后的二维码可查看答案,降低了初学者的学习难度.本书也提供了拓展习题和课外阅读材料,方便学有余力的读者进一步提高.在全书的最后,还设有附录,供读者查阅n元微积分的基本知识. -
高等数学练习册南昌航空大学高等数学教研组 编《高等数学练习册》根据高等学校理工类各专业对高等数学课程的教学要求而编写,分为上下两册。本书为下册,内容涵盖第八至十二章;第八章为向量代数与空间解析几何练习题,第九章为多元函数微分法及其应用练习题,第十章为重积分练习题,第十一章为曲线积分与曲面积分练习题,第十二章为无穷级数练习题。每章末配有复习题,书末附有期中、期末试题各两套。本书可供高等学校理工类各专业高等数学课程学习使用。 -
复分析与Riemann曲面教程Wilhelm Schlag 著复分析是数学的基石,是研究生数学研究中的基本元素。本书强调初等复分析的直观几何基础,自然而然地引出 Riemann 曲面理论。本书以单复变全纯函数的基本理论开篇。前两章是关于复分析的一个快速但全面的教程。第三章专门研究圆盘和半平面上的调和函数,重点是 Dirichlet 问题。从第四章起,作者开始较为详尽和严格地介绍 Riemann 曲面理论:从一开始就强调几何方面,并以椭圆函数和椭圆积分等经典主题作为抽象理论的例证;解释了紧 Riemann 曲面的特殊作用,并建立了它们与代数方程的联系。本书的最后三章分别介绍了涉及 Riemann 曲面理论核心技术内容的三个主要结果:Hodge 分解定理、Riemann-Roch 定理和单值化定理。本书旨在提供一个详细、快速的导引,介绍单复变理论中对数学其他领域最有用的部分,这些领域包括几何群论、动力学、代数几何、数论和泛函分析。全书共有 70 多幅插图用来阐述相关概念和思想,每章末尾的习题为读者提供了充分的实践和独立学习的机会。本书适合对于复分析、共形几何、Riemann 曲面、单值化、调和函数、Riemann 曲面上的微分形式以及 Riemann-Roch 定理感兴趣的研究生阅读,也可供相关领域的研究人员参考。 -
复变量导引Steven G. Krantz本书以快速和易懂的方式向读者介绍了复变量的主要内容,虽然不能面面俱到,但它确实为读者在这一基础领域打下坚实的基础。书中配有大量的插图和例题,论述生动、引人入胜。本书可作为初学这门学科的本科生或准备参加考试的研究生的重要学习资料。在这部佳作中,Krantz为复变量划了重点。本书有一个包含大约 250 个名词的极好的术语表和一个供延伸阅读的参考文献。—— D. P. Turner, CHOICE Magazine
