数学
-
弧焊物理过程建模与数值分析樊丁,黄健康本书在介绍弧焊过程的相关概念、物理意义及电弧特性的同时,系统地介绍了电弧-熔滴-熔池耦合作用下的大量过程建模与数据分析。全书内容分为9章,主要介绍了传热传质的基础理论、TIG焊电弧数值分析、活性TIG焊接过程建模分析、AA-TIG焊接过程建模分析、GMAW(熔化极气体保护焊)焊接过程、外加磁场与金属蒸气作用下焊接电弧行为数值模拟研究、焊丝熔化以及熔滴过渡的数值模拟、焊接过程中熔池行为、熔池与表面行为以及焊缝形貌数值模拟及分析。本书在讲解理论知识的同时,翔实讲解了弧焊过程、数值模拟过程及所得结果数据,并提供相关实例。 -
哈代空间中Beurling不变子空间理论及其应用陈艳妮不变子空间问题是算子理论中一个著名的公开问题,研究内容涉及算子代数、非交换几何和数学物理等多个学科,但至今仍未得到完全解决.本书系统介绍积分空间与哈代空间中Beurling不变子空间研究的起源与进展,重点介绍作者近年来应用算子理论、算子代数及复分析的研究思想和方法,以及在哈代空间中Beurling不变子空间理论方面取得的一系列研究成果.主要内容包括:勒贝格可积函数空间与哈代空间中的基本概念、基于规范化范数的广义勒贝格空间理论与广义哈代空间理论、广义勒贝格空间中的BHL不变子空间理论、向量值广义哈代空间中Beurling不变子空间理论和基于酉不变范数的非交换广义哈代空间中的Beurling不变子空间理论. -
癫痫的动力学建模分析与转迁调控张红慧脑科学研究是全世界科学研究的热点,其中癫痫是我国乃至全球人口健康领域正在面临的重大挑战。由于发作种类繁多、诱因复杂、生理机制至今尚不明确,即便现在**有发展前景的神经调控治疗也无法彻底治愈。因此人们对癫痫的认识还需要医学、神经科学、生物学、数学、力学等学科的交叉研究和共同参与。《BR》作者与国内外著名医学院、国际一流癫痫神经外科医生合作,基于真实的临床医学数据或者电生理实验现象以及医学相关报道,借鉴、修正、构建符合生理特性的癫痫功能网络模型,采用动力学与控制分析手段,从分子细胞水平或者系统回路水平解释癫痫的发病原理从而指导临床干预,辅助实现从“对病治疗”提升为“对症治疗”。 -
数学问题与猜想拾趣赵宏量《数学问题与猜想拾趣》主要从“几个有趣的数学问题”“几何定理的机器证明”“哥德巴赫猜想研究综述与展望”“费马猜想论证的历史简述”“奇妙的整数世界”“简介希尔伯特23个数学问题”等6个章节,向读者介绍了很多有趣、有用、有活力、有后劲、有历史文化价值、有深度和有厚度的数学问题,同时包含了若干数学上负盛名的重大猜想,它是数学史上几百年甚至是上千年的历史文化积淀,而且包含当今数学上一个新的、重要的发现——几何定理的机器证明,让读者了解相关的数学问题与猜想,体会和感悟数学的乐趣。 -
多尺度变换及其在图像纹理分类中的应用董永生本书在归纳分析国内外相关研究的基础上,从小波变换,轮廓变换,剪切波等多尺度变换,以及多尺度变换的子带选择等全新角度研究了图像纹理分类理论和方法,并且还对大数据图像纹理分析和分类问题进行了研究。主要内容包括《BR》(1)研究背景,对早期多尺度变换和图像纹理分类理论和方法给出一个概述性的总结;《BR》(2)对当前主要多尺度变换的理论框架进行总结性介绍《BR》(3)研究小波域直方图比对的纹理分类理论和方法《BR》(4)研究轮廓波域泊松混合模型,及其基于该模型的纹理分类方法;《BR》(5)研究基于轮廓波域聚类的纹理分类理论和方法《BR》(6)研究剪切波子带依赖性的线性回归模型,以及基于该模型的的纹理分类方法《BR》(7)研究轮廓波子带的统计特征提取方法,以及基于轮廓波域统计特征的纹理分类方法《BR》(8)研究了多尺度变换的子带选择理论,以及基于子带选择的图像纹理分类方法《BR》(9)针对当前视觉大数据分析的重要性和难题,研究了大数据图像纹理的分类理论和方法 -
概率论教程[美] 钟开莱 著本书的主要内容如下:随机变量和分布函数,测度论,数学期望,方差,各种收敛性,大数律, 中心极限定理,特征函数,随机游动, 马氏性和鞅理论.本书内容丰富,逻辑紧密,叙述严谨,不仅可以扩展读者的视野,而且还将为其后续的学习和研究打下坚实基础。此外,本书的习题较多, 都经过细心的遴选, 从易到难, 便于读者巩固练习。本版补充了有关测度和积分方面的内容,并增加了一些习题。 -
排队论基础 第5版[美] 约翰·F.肖特尔(John F. Shortle) 著,闫煦,邓博文 译本书介绍了如何分析排队模型的概率性质,以及分析过程中所涉及的统计原理。作者并没有局限于某个特定的应用领域,而是基于计算机科学、工程学、商业和运筹学等多个领域的实践阐述了相关的排队论理论。本书特别介绍了一种数值方法,可以帮助读者理解排队论并对相关数据进行估算,并全面地介绍了简单的和高级的排队模型。本书扩展了对排队论的定性(非数学)描述,包括对日常生活中排队场景的描述,扩展了对随机过程的介绍,包括泊松过程及马尔可夫链。在介绍理论知识的同时,本书还提供了实际应用的例子,所有习题都已经过国外本科及研究生高等课程的课堂测试,可以帮助读者掌握解决实际排队问题的技巧。各章所介绍的关键概念和公式都是相对独立的,读者可以单独阅读感兴趣的内容。本书可作为高等院校应用数学、统计学等专业师生的参考书,也可为应用数学、运筹学、工程学和工业工程领域的从业者提供有益参考。 -
线性代数与空间解析几何黄廷祝 著本书包括矩阵及初等变换、行列式、几何空间、n维向量空间、特征值与特征向量、二次型与二次曲面、线性空间与线性变换等六章基本理论和方法,每章以案例开篇,穿插与“智能”“计算机视觉”相结合的例题或习题,结尾给出案例的MATLAB算法;第七章介绍“Netflix百万美金大奖问题”等综合案例。采用“纸质内容+数字资源”的方式。纸质内容着重讲授基本概念、基本理论和典型例题。数字资源以拓展纸质内容、拓宽学生视野、激发学习兴趣为目标,配置前沿视角、应用案例、重要概念浅析、典型例题精讲等资源,并提供交互实验及自测作业等。 -
群、环、域导引Fernando Q.Gouvêa 著本书简要概述了研究生层次的群、环、域理论,强调了对数学其他领域有用的那些方面。书中聚焦于主要概念以及它们如何结合在一起,无论对学生还是专业人士都非常有用。除了关于群、环、模、域和Galois理论的标准内容外,书中还讨论了标准研究生课程经常省略的其他重要内容,包括线性群、群表示、Artin环的结构、射影、单射和平坦模、Dedekind域及中心单代数。书中的所有重要定理虽然没有给出证明,但通常会讨论这些证明背后的直观概念。准备复习和更新基础代数知识的读者将会从本书中受益,在工作中使用代数的数学家可将其用作案头参考书。 -
高等数学大连理工大学数学科学学院,张宏伟,金光日 著本书分上、下两册. 上册主要内容包括函数、极限与连续,一元函数微分学及其应用,一元函数积分学及其应用和微分方程。下册主要内容包括无穷级数,向量代数及空间解析几何,多元函数微分学及其应用,多元数量值函数积分学及其应用和多元向量值函数积分学及其应用等。为便于读者学习,每一章后面都配有精心选取的习题,绝大部分习题都附有参考答案及提示。本书适用于高等学校理工科非数学类各专业的学生学习和使用,可作为教材或教学参考书,也可供工程技术人员参考。
