数学
-
世界著名平面几何经典著作钩沉刘培杰数学工作室本书共分五编,分别为第一编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形.本书适合大学生、中学生及平面几何爱好者. -
高中物理教学讲义高龙亚本书基于2003年版普通高中物理学科课程标准和普通高中物理实验教科书为纲领,以“理解高中物理课程标准”“读懂高中物理教材”为核心目标,致力于使读者树立正确的物理教材观,掌握钻研教材的基本策略.本书可为我国高中物理教材研究暨物理教学研究提供一定的借鉴. -
计数几何演算法Hermann Schubert计算满足各种条件的代数曲线和簇的数量是计数代数几何中的一个基本问题,而Schubert演算法是解决此类问题的系统和有效的理论。这个理论是由Schubert发展起来的,本书给出了他对这一理论最全面和最通俗易懂的阐述。从一开始,Schubert演算法理论就吸引了许多伟大的数学家的注意。例如,Hilbert提出了关于Schubert演算法的严格论证,作为他著名的23个问题列表中的第15问题。弦理论的最新发展有助于解决计数几何学中一些悬而未决的问题,因此重新燃起了学者们对这一主题的兴趣。Schubert的这部经典著作的英译本对于初学者和计数几何学专家来说都是最有价值和最有趣的,读者可以通过阅读本书了解Schubert如何思考这些问题以及他如何提出解决这些问题的方法。正如Schubert所说,这本书“应该让读者熟悉一个新的几何领域的思想、问题和成果”,并且“应该教授如何处理一种奇特的演算方法,使人们能够以简单自然的方式确定大量的几何数以及奇点数之间的关系”。 -
发展你的空间想象力刘培杰数学工作室本书共分两编∶编图形;第二编游戏.它包含一些有助于智力锻炼的习题,这些习题可以帮助读者发展空间想象力,这不仅对于在初年级学习几何是必须的,对于在工科院校很多课程的成功学习也是必须的.它在选择未来职业的层面上对学生也是有益的. 本书可以作为发展学生想象力的专门教程也可供数学爱好者参考使用. -
中华赋丘成桐 著,王元 书著名数学大师丘成桐先生以赋的文体纵览从远古先秦到魏晋南北朝的历史,写成了长篇的《中华赋》,本书是该作品的艺术再创作,由已故的中国科学院院士、著名数学家、书法家王元先生在生前以书法形式写成,集艺术性、文学性于一体;书中还附有丘先生原文及评注作为对照。丘先生文史修养深厚,曾说过:“中国古典文学深深影响了我做学问的气质和修养。”我们期望本书能受到广大学生、教师和学者的关注和欢迎。本书亦为纪念王元院士之作。 -
缩减多体系统传递矩阵法芮雪《缩减多体系统传递矩阵法》首次全面系统地介绍了国家重大项目研究成果之一,多体系统动力学多体系统传递矩阵法的最新理论——缩减多体系统传递矩阵法。该方法具有无需系统总体动力学方程、系统矩阵阶次低且与系统自由度无关、计算速度快、计算稳定性高、程式化程度高的特点,发展了多体系统动力学分析方法,大幅提升了计算能力和性能,为构造多体系统动力学仿真设计大型通用软件提供了快速并稳定的计算基础;揭示了任意多体系统中任意体和铰的任意联接点的状态矢量之间严格的线性传递规律;提供了相关元件和子系统传递方程和传递矩阵的一般形式;针对囊括各种拓扑结构链式、闭环、树形和一般多体系统,提出了4条总传递方程自动推导定理,定义了3种缩减变换,建立了各种元件的缩减传递方程和缩减传递矩阵普遍递推公式,据此形成了适用于各种拓扑结构多体系统动力学的两种递推求解策略,大幅提高了多体系统动力学计算的数值稳定性和精度。《缩减多体系统传递矩阵法》理论经各种拓扑结构多体系统动力学的计算对比和履带车辆复杂多体系统动力学大型工程实践证明对解决实际问题非常有效。 -
基于学科融合的初中数学项目学习设计傅兰英本书的内容主要是从数学的角度观察与分析、思考与表达、解决与阐释社会生活,以及在科学技术中遇到的现实问题,符合初中阶段综合与实践领域的要求.从提出问题、分析问题、解决问题、评价的角度体现了项目学习的实施流程和原则,为初中数学项目学习指明了大方向,具有科学性、实用性等特点.本书可作为初中数学教师教学参考用书,也可作为高等师范院校的全日制本科生、研究生、教育硕士使用的项目学习教材或参考书,也适用于教研员、中小学数学爱好者参考使用. -
数、形与对称性[美],黛安.L.赫尔曼本书是一部数论和几何方面的教材,是从世界著名出版公司泰勒引进的英文版,中文书名或可译为《数,形与对对称性:数论,几何和群论导论》。本书作者为戴安.L.赫尔曼和小保罗.J.萨利。通过对数论和几何的详细介绍,《数,形与对称性:数论,几何和群论导论》一书能够帮助读者理解严谨的数学思想和证明。 -
用解析法研究圆锥曲线的几何理论谢彦麟圆锥曲线是解析几何的主要课题.中学及数学系课外只阐述三种圆锥曲线的概念(几何定义),及其切线、极线、直径等概念,着重论述它们的方程,除离心率的意义外,对圆锥曲线的几何性质极少阐述.本书基本上用解析法(除少数用纯几何方法很易解决者外)论证三种圆锥曲线的几何性质的近百个基本命题,并详细解答有关练习题及剑桥(圆锥曲线)问题.本书供中学教师及数学爱好者作课外读物进行阅读. -
平面国Edwin A. Abbott 著本书首次出版于1884年,一百多年来一直吸引着各个年龄层次的读者,已成为科幻小说的经典之作。 本书的主角是生活在二维的平面国里的一个正方形,它向读者介绍了二维世界中的各种奇异现象,并带领读者游历了一维的直线国和三维的空间国,还提出了它对更高维的思考。作者的奇妙构思提供了对维度概念的直观、生动的刻画,并能引发读者更深入的思考。不仅如此,作者还借此讽刺了英国维多利亚时代的性别歧视和阶级制度。 这是一本集数学、科幻、讽刺于一体的奇书。在作者的精心阐述下,本书不仅有趣,而且有益,曾被翻译成多国文字,并以电影、动画片等形式出现。相信任何对科幻、科学、数学、写作或社会建制感兴趣的人都会喜欢这本书。
