数学
-
广义微分几何[法]帕特里克·伊格莱西亚斯-泽穆尔(Patrick Iglesias-Zemmour)上世纪末,微分几何受到了理论物理学的挑战:新的对象从经典理论的边缘转移到了几何学家的关注中心。理论物理对数学提出了新需求,于是诞生了广义微分几何(diffeology),本书是这一领域的第一部教科书,奠定了在理论物理中使用的微分几何主要领域的基础。广义微分几何(diffeology)是经典微分几何的一个全局性和包容性的扩展。全局性在于它将其对象扩展到流形之外的 (1)奇异空间,例如无理环面、轨形及叶状集;(2)无限维光滑函数集,微分同胚群、群胚等。这是一种包容性理论,因为在几何构造过程中产生的各种对象都自然带有广义微分结构,包括子空间、商、函数集、幂集等等。这是通过简化公理来实现的:集合上的广义微分结构规定集合中哪些参数化是光滑的。参数化是该理论的核心,它只是由一组数集索引的任意族。为了与通常的实数世界中的光滑性一致,这组参数化需要满足三个简单公理:覆盖、光滑兼容性和局部性。通过将视角从流形转移到一般的广义微分空间,我们得到了一个关于最常见的集合论运算(和、积、子集和商)的强封闭范畴。此外,光滑映射集在泛函广义微分结构下也自然是一个广义微分空间。换句话说,广义微分空间范畴是一个非常简单的完备、余完备和笛卡尔闭的范畴,并且包含流形作为一个满子范畴。许多例子表明,这种灵活性并没有丢失什么;相反,像无理环面这样的对象在几乎所有其它推广流形的方法中都是平凡的,而它们作为广义微分几何对象绝对是非平凡的,并且是有用的。广义微分几何这种公理式的范畴性质使许多定理和构造变得自然。我们可以在不切换范畴的情况下使用光滑路径或环路空间,这带来了深度简化。例如,环路空间上的微分学将许多经典定理简化为最简单的表达式,并强调了它们的高层本质。同时,它们给出了任何广义微分空间的恰当推广。同伦、同调、上同调、De Rham演算、纤维丛、联络、轨形、覆盖、辛几何、矩映射,所有这些经典构造都能在广义微分几何中自然实现。经典微分几何中的许多启发式构造(例如轨形、带角流形、分层等)实际上定义了明确的子范畴,而不需要通过调整或扭曲公理来实现。本书中包含了奇异空间和无限维空间的例子。通过这些例子和练习,读者可以熟悉广义微分几何中发展出来的具体技术。广义微分几何(diffeology)是一种强调实际操作的理论,是一种工具。有了这些经验,读者将能够把这一理论扩展到本书的范围之外。本书对研究微分几何或数学物理的学生与研究人员会非常有用。 -
受限三体问题[印]坤德拉帕姆.比诺德.曼冈本书是一部天体力学方面的英文专著,中文书名可译为《受限三体问题》。本书的作者:[印]坤德拉帕姆.比诺德.曼冈(Khun-drakpam Binod Mangang)博士,他是印度米佐拉姆大学数学与计算机系教授。2009年在印度德里大学获得博士学位,研究方向为动力系统(拓扑的)。 -
图论问题的遗传算法[印],Sk.Md.阿布.纳伊姆本书就是一部由国外原版引进的关于算法的数学专著。本书的中文书名或可译为《图论问题的遗传算法:在清晰与模糊的环境中(英文)》。本书的作者为Sk.Md.阿布.纳伊姆(Sk.Md.Abu Nayeem),印度数学家,现为印度阿丽亚大学数学系教授。他的研究方向为图论、算法和模糊集合等。 -
非线性振动,动力系统与向量的分支[美]约翰.顾肯海默本书主要介绍了非线性振动与动力系统的相关理论.第一章介绍了微分方程和动力系统的基本概念以及二维流的基本结果,如 Poincare-Bendixson 定理、Peixoto定理、指标理论等第二章介绍了贯穿全书的四个重要例子∶van der Pol方程、Duffing方程、Lorenz 方程和弹子球问题,以及它们的一些重要的混沌性质,并对这些性质进行了详细的讨论;其他几章介绍了研究混沌运动的动力系统的主要方法,分别为局部分支、规范型、扰动法与平均法、双曲集、符号动力系统、奇异吸引子、大范围分支与流的局部余维2分支等.本书适合研究非线性振动与动力系统相关领域的学者及专家作为教材或参考用书使用. -
从零起步 精通复数高红卫该书重在科普、兼顾提高,全面介绍复数综合知识的参考书,由浅入深地全面、详细介绍复数的基本概念、基本运算规则、背景知识及其典型应用场景,配以必要的函数图像与演算举例,文、例、图并茂,便于读者理解概念及对照练习,具有较强系统性、完整性和通俗性。通过该书的学习,能够掌握复数的基本运算规则及其来龙去脉。对复数的基本概念、基本运算规则、背景知识及其典型应用场景给予比较完整、系统介绍的工具性通俗读物成为这个时代的社会需求。 -
抽象调和分析教程[美] 杰拉德·福兰德(Gerald B.Folland) 著《抽象调和分析教程》是一部学习群上调和分析的经典教材,以简明易懂的方式讲授群上傅里叶分析与酉表示理论。抽象理论是研究具体案例的升华,并提供一个统一的框架。作为经典傅里叶分析的推广,抽象调和分析理论为不少现代分析奠定了基础。本书中不仅讲述抽象理论,也精心挑选了一些具体例子,用这些示例来阐明结果并显示抽象理论适用之广度。在简要回顾了Banach代数理论和谱理论的相关内容后,本书着重讲授局部紧群、Haar测度和酉表示的基本结论,包括Gelfand-Raikov存在性定理。作者用两章的篇幅分析了阿贝尔群和紧群,然后探讨了诱导表示,包括非本原性定理(Imprimitivity Theorem)及其应用。本书最后对非紧非阿贝尔群的表示论也做了一些讨论。在第2版中新增了冯·诺伊曼代数介绍、马克·卡克(Mark Kac)关于维纳定理的受限形式的简单证明、利用四元数解释SU(2)和SO(3)之间的关系以及讨论离散海森堡群及其中心商的表示等。本书可供高等院校数学专业本科生与研究生学习和参考。 -
学科体系中的数学文化陈克胜《学科体系中的数学文化》是在2006年出版的《数学文化概论》的基础上形成的,吸收了关于数学文化的最新研究成果,扩充了各学科与数学关系的内涵。进一步地说,《学科体系中的数学文化》在多年的教学实践基础上,对原有的《数学文化概论》进行了适当的扩充,以各学科与数学之间的关系为主线,强调数学在学科体系中的基础地位,阐述了数学在哲学、自然科学、文学、经济学、教育学、音乐、绘画、法律等学科中的应用、辩证关系和发展趋势,丰富了数学文化学研究。《学科体系中的数学文化》旨在满足大众关于数学在各学科中运用的好奇心和兴趣,丰富高校数学文化课程建设的内容,提升大众的数学素养。 -
非线性中立型泛函微分方程理论及数值分析王晚生本书较系统地讨论了非线性中立型泛函微分方程数值方法的稳定性、收敛性和耗散性。本书共8章,第1章介绍了中立型泛函微分方程数值分析的应用背景和研究进展;第2章致力于中立型泛函微分方程理论解的稳定性分析,为其算法分析奠定基础;第3章在一般的Banach空间中研究数值方法的稳定性和收敛性;第4—6章分别讨论了三种特殊类型中立型泛函微分方程的数值解法并分析这些数值方法的稳定性和收敛性;第7章讨论了数值方法的耗散性;第8章获得了中立型泛函微分方程数值方法的B-理论。书中有大量算例,为理论结果提供了实验验证。 -
数学天书中的证明Martin Aigner, Günte本书介绍了45个著名数学问题的极富创造性和独具匠心的证明。其中有些证明不仅想法奇特、构思精巧,作为一个整体更是天衣无缝。难怪,西方有些虔诚的数学家将这类杰作比喻为上帝的创造。这不是一本教科书, 也不是一本专著,而是一本开阔数学视野和提高数学修养的著作。希望每一个数学爱好者都会喜欢这本书,并且从中学到许多东西。 第六版在上一版的基础上进行了扩充和修订,其中包含了一个关于Van der Waerden积和式猜想的全新章节,以及其他章节中高度原创而优美的新证明。 2018年“Steele数学阐释奖”颁奖词节录:“……想要写出一部可以被各个层次和背景的人阅读和欣赏的数学书几乎是不可能的,但Aigner和Ziegler以精湛的文笔完成了这一壮举。……这本书对数学有着不可估量的作用,为非数学家阐明了当数学家在谈论美时他们在谈论什么。” -
某些图形的施泰纳距离的细谷多项式[伊拉克],赫里斯.O.阿卜杜拉著名数学家R.D.卡迈查尔曾指出:数学语言提供了表达精确思想的主要手段。为了取得更加深刻的、影响远大的结果,必须依靠思维过程。但若没有数学语言的支持,这种过程就无法贯彻到底。在数学符号中好像存贮了一定量的智力,这种智力释放出来时就能产生几乎是爆炸性的威力。这就像是强大的发动机,我们借助它坚起智力结构;如果没有这种支持,我们的能力就无法进入这种结构。本书研究的是某种距离。
